DOI QR코드

DOI QR Code

Tip-jet gyroplane 개념설계 기법 개발 및 사이징

Development of Conceptual Design Methodology and Initial Sizing for Tip-Jet Gyroplane

  • Lee, Donguk (Depart. of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lim, Daejin (Depart. of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yee, Kwanjung (Depart. of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2017.11.10
  • 심사 : 2018.05.23
  • 발행 : 2018.06.01

초록

Tip-jet gyroplane은 제자리 비행 시 tip-jet의 반발력을 이용하여 로터의 회전력을 얻고, 전진 비행 시 오토자이로 형태로 비행하는 복합형 회전익기의 한 종류이다. Tip-jet gyroplane의 적절한 성능해석과 개념 설계 단계의 사이징을 수행하기 위해서는 tip-jet 모드, gyroplane 모드, transient 모드를 모두 고려할 수 있는 설계 및 해석 기법이 필요하다. 본 연구에서는 이 세 가지 비행 모드 성능해석과 기체 사이징을 수행할 수 있는 코드를 개발하였다. 해석 기법은 tip-jet gyroplane 비행 모드를 이루고 있는 해석 코드 별로 각각 실험값과 비교 검증되었다. 개발된 코드를 이용하여 300km 혹은 400km의 임무 운용반경에서 150knots의 고속 비행을 수행하는 2가지 임무형상에 대해 초기사이징을 수행하였고, 초기 사이징 결과로 설계된 3,000lb 급 tip-jet gyroplane의 형상 및 성능을 분석하였다.

Tip-jet gyroplane is a type of compound helicopter that employs the tip-jet system to rotate the rotor by a reaction force from the gas jetted at the rotor tips in hovering. In forward flight, tip-jet gyroplane converts into a form of a gyroplane. Therefore, it is necessary to develop a new conceptual design method to consider three flight modes: tip-jet mode, gyroplane mode, and transient mode. This study developed the numerical code of conceptual design methodology that can consider three flight modes. The developed code was validated against the available experiment data. Based on the developed code, initial sizing of tip-jet gyroplane was performed for two mission profiles including high speed forward flight of 150knots with a mission range of 300km or 400km. Subsequently, the configuration and performance of the 3,000lb tip-jet gyroplane were analyzed.

키워드

참고문헌

  1. Harris, F. D., "An Overview of Autogyros and The McDonnell XV-1 Convertiplane," NASA CR-2003-212799, 2003, pp.1-259.
  2. Park, K. H., Goo, N. S., Park, H. C., Yoon, K. J., and Byun, Y. H., "Design and Test of a Reduced Scale Tip-Jet Rotor Using a Small Turbo-Jet Engine," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 32, No. 2, 2004, pp.31-37. https://doi.org/10.5139/JKSAS.2004.32.2.031
  3. Vu, N. A., Lee, Y. J., Lee, J. W., Kim, S. H., and Chung, I. J., "Configuration Design and Optimisation Study of a Compound Gyroplane," Aircraft Engineering and Aerospace Technology, Vol. 83, No. 6, 2011, pp.420-428. https://doi.org/10.1108/00022661111173298
  4. Kim, W. J., Chae, S. H., Oh, S. J., Kim, S. B., Ahn, L. K., and Yee, K. J., "Systematic Determination of Empirical Parameters Used in Helicopter Conceptual Design," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 8, 2012, pp.703-710.
  5. Leishman, J. G., Principles of Helicopter Aerodynamics, 2nd Ed, Cambridge University Press, Cambridge, New York, 2006, pp.115-170, 304-309, 702-708.
  6. Keys, C. N., "Rotary-Wing Aerodynamics Volume 2: Performance Prediction of Helicopters," NASA CR-3083, 1979, pp.143-153.
  7. Yunus, A. C., and John M. C., Fluid Mechanics: Fundamentals and Application, 3rd Ed, McGraw-Hill, New York, 2007, pp.360-364.
  8. Jun, Y. M., Jung, Y. W., and Yang, S. S., "Conceptual Design For a SUAV Propulsion System Sizing," Proceedings of the 24th ICAS Congress, August 2004.
  9. Jung, Y. W., Jun, Y. M., and Yang, S. S., "The Application of CFD for the Duct System Design of CRW aircraft," Proceeding of the Korean Society of Computational Fluids Engineering Spring Conference, August 2003, pp.200-205.
  10. Nita, M., and Scholz, D., "Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters," Proceeding of the Deutscher Luft-und Raumfahrtkongress, August 2012.
  11. Bagai, A., and Leishman, J. G., "A Study of Roter Wake Developments and Wake-Body IOnteractions in Hover using Wide-Field Shadowgraphy," Journal of the American Helicopter Society, Vol. 37, No. 4, 1992, pp.48-57. https://doi.org/10.4050/JAHS.37.48
  12. Schwartz, A. W., "Tipjet 80-Inch Model Rotor Hover Test: Test No. 1198," CDRKNSWC/SSD-93/54, September 1993, pp.1-103.
  13. Choi, I. B., Jang, J. S., Hyun, Y. O., Kim, M. J., and Yim, J. B., "Preliminary sizing of a tip jet driven compound rotorcraft," Proceeding of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2015, pp.845-848.
  14. Rand, O., and Khromov, V., "Helicopter Sizing by Statics," Journal of the American Helicopter Society, Vol. 49, No. 3, 2004, pp.300-317. https://doi.org/10.4050/JAHS.49.300