참고문헌
- Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253-264. https://doi.org/10.1109/TGRS.2002.808356
- Brenninkmeijer, C. A. M., and Coauthors, 2007: Civil aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmos. Chem. Phys., 7, 4953-4976, doi:10.5194/acp-7-4953-2007.
-
Chevallier, F., and Coauthors, 2010:
$CO_2$ surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res., 115, D21307, doi:10.1029/2010JD013887. -
Crevoisier, C., A. Chedin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott, 2009: First year of upper tropospheric integrated content of
$CO_2$ from IASI hyperspectral infrared observations. Atmos. Chem. Phys., 9, 4797-4810. https://doi.org/10.5194/acp-9-4797-2009 - Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162. https://doi.org/10.1029/94JC00572
-
Feng, L., P. I. Palmer, H. Bosch, and S. Dance, 2009: Estimating surface
$CO_2$ fluxes from space-borne$CO_2$ dry air mole fraction observations using an ensemble Kalman filter. Atmos. Chem. Phys., 9, 2619-2633. https://doi.org/10.5194/acp-9-2619-2009 -
Feng, L., and Coauthors, 2011: Evaluating a 3-D transport model of atmospheric
$CO_2$ using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys., 11, 2789-2803, doi:10.5194/acp-11-2789-2011. -
Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of
$CO_2$ sources and sinks using atmospheric transport models. Nature, 415, 626-630. https://doi.org/10.1038/415626a -
Houweling, S., and Coauthors, 2015: An intercomparison of inverse models for estimating sources and sinks of
$CO_2$ using GOSAT measurements. J. Geophys. Res. Atmos., 120, 5253-5266, doi:10.1002/2014JD022962. -
Jiang, F., H. M. Wang, J. M. Chen, T. Machida, L. X. Zhou, W. M. Ju, H. Matsueda, and Y. Sawa, 2014: Carbon balance of China constrained by CONTRAIL aircraft
$CO_2$ measurements. Atmos. Chem. Phys., 14, 10133-10144. https://doi.org/10.5194/acp-14-10133-2014 -
Kim, H., H. M. Kim, J. Kim, and C.-H. Cho, 2016: A comparison of the atmospheric
$CO_2$ concentrations obtained by an inverse modeling system and passenger aircraft based measurement. Atmosphere, 26, 387-400, doi:10.14191/Atmos.2016.26.3.387 (in Korean with English abstract). -
Kim, H., H. M. Kim, J. Kim, T. Machida, A. R. Jacobson, C.-H. Cho, and T.-Y. Goo, 2017a: Effect of assimilating aircraft
$CO_2$ observations in CarbonTracker, Proceedings of 2017 10th International Carbon Dioxide Conference, 21th - 25th August, 2017, Interlaken, Switzerland. -
Kim, H., H. M. Kim, J. Kim, and C.-H. Cho, 2018: Effect of data assimilation parameters on the optimized surface
$CO_2$ flux in Asia. Asia-Pac. J. of Atmos. Sci., 54, 1-17, doi:10.1007/s13143-017-0049-9. - Kim, J., H. M. Kim, and C.-H. Cho, 2012: Application of Carbon Tracking System based on ensemble Kalman filter on the diagnosis of Carbon Cycle in Asia. Atmosphere, 22, 415-427, doi:10.14191/Atmos.2012.22.4.415 (in Korean with English abstract).
- Kim, J., H. M. Kim, and C.-H. Cho, 2014a: The effect of optimization and the nesting domain on carbon flux analyses in Asia using a carbon tracking system based on the ensemble Kalman filter. Asia-Pac. J. of Atmos. Sci., 50, 327-344, doi:10.1007/s13143-014-0020-y.
-
Kim, J., H. M. Kim, and C.-H. Cho, 2014b: Influence of
$CO_2$ observations on the optimized$CO_2$ flux in an ensemble Kalman filter. Atmos. Chem. Phys., 14, 13515- 13530, doi:10.5194/acp-14-13515-2014. -
Kim, J., H. M. Kim, C.-H. Cho, K.-O. Boo, A. R. Jacobson, M. Sasakawa, T. Machida, M. Arshinov, and N. Fedoseev, 2017b: Impact of Siberian observations on the optimization of surface
$CO_2$ flux, Atmos. Chem. Phys., 17, 2881-2899, doi:10.5194/acp-17-2881-2017. -
Kulawik, S., and Coauthors, 2010: Characterization of tropospheric emission spectrometer (TES)
$CO_2$ for carbon cycle science. Atmos. Chem. Phys., 10, 5601-5623, doi:10.5194/acp-10-5601-2010. - Kulawik, S., and Coauthors, 2016: Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
-
Machida, T., and Coauthors, 2008: Worldwide measurements of atmospheric
$CO_2$ and other trace gas species using commercial airlines. J. Atmos. Oceanic Technol., 25, 1744-1754, doi:10.1175/2008JTECHA1082.1. -
Machida, T., Y. Tohjima, K. Katsumata, and H. Mukai, 2011: A new
$CO_2$ calibration scale based on gravimetric onestep dilution cylinders in National Institute for Environmental Studies - NIES 09$CO_2$ Scale, Proc. 15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, GAW Rep. 194, Geneva, Switzerland, World Meteorol. Organ., 114-119. -
Matsueda, H., T. Machida, Y. Sawa, Y. Nakagawa, K. Hirotani, H. Ikeda, N. Kondo, and K. Goto, 2008: Evaluation of atmospheric
$CO_2$ measurements from new flask air sampling of JAL airliner observations. Pap. Meteorol. Geophys., 59, 1-17, doi:10.2467/mripapers.59.1. -
Niwa, Y., T. Machida, Y. Sawa, H. Matsueda, T. J. Schuck, C. A. M. Brenninkmeijer, R. Imasu, and M. Satoh, 2012: Imposing strong constraints on tropical terrestrial
$CO_2$ fluxes using passenger aircraft based measurements. J. Geophys. Res., 117, D11303, doi:10.1029/2012JD01747. -
Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans, 2005: An ensemble data assimilation system to estimate
$CO_2$ surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157. - Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. U.S.A., 104, 18925-18930. https://doi.org/10.1073/pnas.0708986104
- Peters, W., and Coauthors, 2010: Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Glob. Change Biol., 16, 1317-1337, doi:10.1111/j.1365-2486.2009.02078.x.
-
Peylin, P., and Coauthors, 2013: Global atmospheric carbon budget: results from an ensemble of atmospheric
$CO_2$ inversions. Biogeosciences, 10, 6699-6720, doi:10.5194/bg-10-6699-2013. -
Sawa, Y., T. Machida, and H. Matsueda, 2008: Seasonal variations of
$CO_2$ near the tropopause observed by commercial aircraft. J. Geophys. Res., 113, D23301, doi:10.1029/2008JD010568. -
Stephens, B. B., and Coauthors, 2007: Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric
$CO_2$ . Science, 316, 1732-1735, doi:10.1126/science.1137004. - United Nations, 2016: Climate Action Now-Summary for Policymakers 2016, United Nations, 47 pp.
- Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924. https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
-
Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, 2009: Global concentrations of
$CO_2$ and$CH_4$ retrieved from GOSAT: first preliminary results. SOLA, 5, 160-163. https://doi.org/10.2151/sola.2009-041 -
Zhang, H. F., and Coauthors, 2014: Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface
$CO_2$ observations for the period 2006-2010. Atmos. Chem. Phys., 14, 5807-5824, doi:10.5194/acp-14-5807-2014.