DOI QR코드

DOI QR Code

Singular Point of Voltammetric Impedance Data and its Application in Analyzing Voltammetry Data

  • Received : 2018.03.07
  • Accepted : 2018.04.13
  • Published : 2018.06.30

Abstract

In this technical note, I report the analysis of electrochemical impedance data measured with potential sweeping. Even though the instruments for voltammetric impedance measurements have been developed for decades using different approaches, their applications are limited due to the lack of well-established protocols to easily analyze voltammetry data. To fill this gap, the singular point of the specific potential is considered that is only determined by the standard/formal potential and the transfer coefficient and is independent of the kinetics and experimental parameters (including revertability) of faradaic reactions. Taking the advantage of its inertness, I suggest an approach employing the singular point as a reference to obtain general electrochemical information. As all the concepts and methods are verified with numerical simulations, this technique is expected to be applied for complex reactions involving electrochemical and chemical reaction mechanisms.

Keywords

References

  1. J. Osteryoung, Accts. Chem. Res., 1993, 26(3), 77-83. https://doi.org/10.1021/ar00027a001
  2. E. P. Parry, and R. A. Osteryoung, Anal. Chem., 1964, 36(7), 1366-1367. https://doi.org/10.1021/ac60213a001
  3. J. B. Flato, Anal. Chem., 1972. 44(11), 75A-87A. https://doi.org/10.1021/ac60319a769
  4. L. Ramaley, and M. S. Krause, Anal. Chem., 1969, 41(11), 1362-1365. https://doi.org/10.1021/ac60280a005
  5. D. E. Smith, and T. G. McCord, Anal. Chem., 1968, 40(3), 474-481. https://doi.org/10.1021/ac60259a029
  6. T. R. Brumleve, J. J. O'Dea, R. A. Osteryoung, and J. Osteryoung, Anal. Chem., 1981, 53(4), 702-706. https://doi.org/10.1021/ac00227a029
  7. A. M. Bond, R. J. O'Halloran, I. Ruzic, and D. E. Smith, Anal. Chem., 1976, 48(6), 872-883. https://doi.org/10.1021/ac60370a032
  8. A. M. Bond, N. W. Duffy, S.-X. Guo, J. Zhang and D. Elton, Anal. Chem., 2005, 77 (9), 186A-195A.
  9. B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem., 2010, 3, 207-229. https://doi.org/10.1146/annurev.anchem.012809.102211
  10. C. M. Pettit, P. C. Goonetilleke, C. M. Sulyma, and D. Roy, Anal. Chem., 2006, 78(11), 3723-3729. https://doi.org/10.1021/ac052157l
  11. G. A. Ragoisha, Electroanalysis, 2015, 27(4), 855-863. https://doi.org/10.1002/elan.201400648
  12. B.-Y. Chang and S.-M. Park, J. Phys. Chem. C, 2012, 116 (34), 18270-18277. https://doi.org/10.1021/jp305283z
  13. John W. Moore, Ralph G. Pearson, Kinetics and Mechanism, 3rd Ed., Wiley, 1981, 48-51.
  14. M. Greger, M. Kollar and D. Vollhardt, Physical Review B, 2013, 87(19), 195140. https://doi.org/10.1103/PhysRevB.87.195140
  15. H.J. Cleaves, Isoelectric Point In Encyclopedia of Astrobiology, Springer Berlin Heidelberg, 2011, 858-859.
  16. B. Bjellqvist, G.J. Hughes, C. Pasquali, N. Paquet, F. Ravier, J.-C. Sanchez, S. Frutiger and D. Hochstrasser, Electroanalysis, 1993, 14(1), 1023-1031.
  17. M. Son, D. Kim, J. Kang, J.H. Lim, S. H. Lee, H. J. Ko, S. Hong and T. H. Park, Anal. Chem., 2016, 88(23), 11283-11287. https://doi.org/10.1021/acs.analchem.6b03284
  18. B.-Y. Chang, J. Electrochem. Sci. Technol., 2017, 8(3), 244-249. https://doi.org/10.5229/JECST.2017.8.3.244
  19. A. M. Bond, R. J. O'Halloran, I. Ruzic1 and D. E. Smith, Anal. Chem., 1978, 50(2), 216-223. https://doi.org/10.1021/ac50024a014
  20. B.-Y. Chang, J. Electrochem. Sci. Technol., 2015, 6(4), 146-151. https://doi.org/10.5229/JECST.2015.6.4.146
  21. M. Muzikar, W. R. Fawcett, Anal. Chem., 2004, 76(13), 3607-3611. https://doi.org/10.1021/ac0499524
  22. R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36(4), 706-723. https://doi.org/10.1021/ac60210a007
  23. D. K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. Wiley-VCH, New York, 1993, 105-114.
  24. B.-Y. Chang, J. Electrochem. Sci. Technol., 2016, 7(4), 293-297. https://doi.org/10.5229/JECST.2016.7.4.293