DOI QR코드

DOI QR Code

Sn-3.0Ag-0.5Cu, Sn-0.7Cu 및 Sn-0.3Ag-0.5Cu 합금의 제조 및 특성평가

Fabrication and characterization of Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu alloys

  • 이정일 (한국교통대학교 신소재공학전공) ;
  • 팽종민 (한국교통대학교 신소재공학전공) ;
  • 조현수 (한국교통대학교 신소재공학전공) ;
  • 양수민 (한국교통대학교 신소재공학전공) ;
  • 류정호 (한국교통대학교 신소재공학전공)
  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Paeng, Jong Min (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Cho, Hyun Su (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Yang, Su Min (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 투고 : 2018.06.05
  • 심사 : 2018.06.18
  • 발행 : 2018.06.30

초록

솔더(solder) 재료는 수 천년 이상 인류 문명과 함께해온 대표적인 금속 합금으로서 현재까지도 전자 패키징(electronic packaging) 및 표면 실장(SMT, surface mount technology) 분야의 핵심 소재로 사용되고 있다 그러나 최근 Ag 가격의 급격한 상승과 전자산업의 저가격화 전략으로 인해 솔더 재료에서의 Ag 함량의 감소가 지속적으로 요구되고 있다. 본 연구에서는 Sn-3.0Ag-0.5Cu, Sn-0.7Cu 및 Sn-0.3Ag-0.5Cu(weight%) 조성의 무연납 솔더바 샘플을 주조법으로 합금화 하였다. 제조한 Sn-3.0Ag-0.5Cu, Sn-0.7Cu 및 Sn-0.3Ag-0.5Cu 샘플에 대한 결정구조, 화학조성 및 미세구조를 XRD, XRF, 광학현미경, FE-SEM 및 EDS 분석을 이용하여 조사하였다. 분석결과, 제조된 샘플은 ${\beta}-Sn$, ${\varepsilon}-Ag_3Sn$${\eta}-Cu_6Sn_5$ 결정으로 구성되어 있었을 확인할 수 있었다.

In the past few years, various solder compositions have been a representative material to electronic packages and surface mount technology industries as a replacement of Pb-base solder alloy. Therefore, extensive studies on process and/or reliability related with the low Ag composition have been reported because of recent rapid rise in Ag price. In this study, Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu solder bar samples were fabricated by melting of Sn, Ag and Cu metal powders. Crystal structure and element concentration were analyzed by XRD, XRF, optical microscope, FE-SEM and EDS. The fabricated solder samples were composed of ${\beta}-Sn$, ${\varepsilon}-Ag_3Sn$ and ${\eta}-Cu_6Sn_5$ phases.

키워드

참고문헌

  1. A. Roshanghias, G. Khatibi, A. Yakymovych, J. Bernardi and H. Ipser, "Sn-Ag-Cu nanosolders: solder joints integrity and strength", J. Electron. Mater. 45 (2016) 4390. https://doi.org/10.1007/s11664-016-4584-4
  2. D.R. Frear, "Issues related to the implementation of Pb-free electronic solders in consumer electronics", J. Mater. Sci.: Mater. Electron. 18 (2007) 319.
  3. O. Unal, D.J. Barnard and I.E. Anderson, "A shear test method to measure shear strength of metallic materials and solder joints using small specimens", Scripta Materialia 40 (1999) 271. https://doi.org/10.1016/S1359-6462(98)00432-1
  4. C.M. Miller, E.A. Iver and J.F. Smith, "A viable tin-lead solder substitute: Sn-Ag-Cu", J. Electron. Mater. 23 (1994) 595. https://doi.org/10.1007/BF02653344
  5. A. Roshanghias, A. Yakymovych, J. Bernardi and H. Ipsera, "Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles", Nanoscale 7 (2015) 5843. https://doi.org/10.1039/C5NR00462D
  6. A.K. Larsson, L. Stenberg and S. Lidin, "The superstructure of domain-twinned ${\eta}^{\prime}-Cu_6Sn_5$", Acta Crystallographica Section B 50 (1994) 636. https://doi.org/10.1107/S0108768194004052
  7. J.M. Song, C.F. Huang and H.Y. Chuang, "Crystallization, morphology and distribution of $Ag_3Sn$ in Sn-Ag-Cu alloys and their influence on the vibration fracture properties", Mater. Sci. Eng. A 466 (2007) 9. https://doi.org/10.1016/j.msea.2007.04.121
  8. L.R. Garcia, W.R. Osorio and A. Garcia, "The effect of cooling rate on the dendritic spacing and morphology of $Ag_3Sn$ intermetallic particles of SnAg solder alloys", Mater. Design 32 (2011) 3008. https://doi.org/10.1016/j.matdes.2010.12.046
  9. D. Swenson, "The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints", J. Mater. Sci.: Mater. Electron. 18 (2007) 39. https://doi.org/10.1007/s10856-006-0660-2
  10. T.T. Bao, Y. Kim, J. Lee and J.-G. Lee, "Preparationand thermal analysis of Sn-Ag nano solders", Mater. Trans. 51 (2010) 2145. https://doi.org/10.2320/matertrans.MJ201013
  11. I.E. Anderson, J.K. Walleser, J.L. Harringa, F Laabs and A Kracher, "Nucleation control and thermal aging resistance of near-eutectic Sn-Ag-Cu-X solder joints by alloy design", J. Electon. Mater. 38 (2009) 2770. https://doi.org/10.1007/s11664-009-0936-7
  12. C.-M. Chuang and K.-L. Lin, "Effect of microelement addition on the interfacial reaction between Sn-Ag-Cu and the Cu substrate", J. Electron. Mater. 32 (2003) 1426. https://doi.org/10.1007/s11664-003-0111-5
  13. C. Andersson, Z. Lai, J. Liu, H. Jiang and Y. Yu, "Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders", Mater. Sci. Eng. A 394 (2005) 20. https://doi.org/10.1016/j.msea.2004.10.043
  14. K. Suganuma, S.H. Huh, K.S. Kim, H. Nakase and Y. Nakamura, "Effect of Ag content on properties of Sn- Ag binary alloy solder", Mater. Trans. 42 (2001) 286. https://doi.org/10.2320/matertrans.42.286
  15. K.S. Kim, S.H. Huh and K. Suganuma, "Effects of Intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints", J. Alloy. Compd. 352 (2003) 226. https://doi.org/10.1016/S0925-8388(02)01166-0
  16. C.W. Hwang and K. Suganuma, "Interface microstructures between Ni-P alloy plating and Sn-Ag-(Cu) lead-free solders", J. Mater. Res. 18 (2003) 2540. https://doi.org/10.1557/JMR.2003.0354
  17. C.W. Hwang, K. Suganuma, M. Kiso and S. Hashimoto, "Influence of Cu addition to interface microstructure between Sn-Ag solder and Au/Ni-6P plating", J. Electron. Mater. 33 (2004) 1200. https://doi.org/10.1007/s11664-004-0123-9
  18. S.W. Kim, J.W. Yoon and S.B. Jung, "Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu metallization", J. Electron. Mater. 33 (2004) 1182. https://doi.org/10.1007/s11664-004-0121-y
  19. K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello and C.A. Handwerker, "Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloy", J. Electron. Mater. 29 (2000) 1122. https://doi.org/10.1007/s11664-000-0003-x
  20. W. Yoon, W.C. Moon and S.B. Jung, "Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging", Microelectronic Eng. 83 (2006) 2329. https://doi.org/10.1016/j.mee.2006.10.027
  21. T.C. Chiu and K.L. Lin, "Electromigration behavior of the Cu/Au/SnAgCu/Cu solder combination", J. Mater. Res. 23 (2008) 264. https://doi.org/10.1557/JMR.2008.0036