DOI QR코드

DOI QR Code

Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements-A review

  • Gayana, B.C. (Department of Mining Engineering, National Institute of Technology Karnataka) ;
  • Chandar, Karra Ram (Department of Mining Engineering, National Institute of Technology Karnataka)
  • Received : 2017.09.09
  • Accepted : 2017.12.07
  • Published : 2018.06.25

Abstract

Utilization of mine waste rocks and tailings in concrete as aggregates will help in sustainable and greener development. The literature shows the potential use of iron ore tailings as a replacement of natural fine aggregates. As natural sand reserves are depleting day by day, there is a need for substitution for sand in concrete. A comprehensive overview of the published literature on the use of iron ore waste and tailings and other industrial waste in concrete is being presented. The effect of various properties such as workability, compressive strength, split tensile strength, flexural strength, durability and microstructure of concrete have been presented in this paper.

Keywords

References

  1. Anderson, D.J., Smith, S.T. and Au, F.T. (2016), "Mechanical properties of concrete utilizing waste ceramic as coarse aggregate", J. Constr. Build. Mater., 117, 20-28. https://doi.org/10.1016/j.conbuildmat.2016.04.153
  2. Andre, H., Urs, E. and Thomas, M. (1999), "Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete", J. Cement Concrete Res., 29(3), 297-302. https://doi.org/10.1016/S0008-8846(98)00207-5
  3. Arora, S. and Singh, S.P. (2016), "Analysis of flexural fatigue failure of concrete made with 100% coarse recycled concrete aggregates", J. Constr. Build. Mater., 102, 782-791. https://doi.org/10.1016/j.conbuildmat.2015.10.098
  4. Batayneh, M., Marie, I. and Asi, I. (2007), "Use of selected waste materials in concrete mixes", J. Waste Manage., 27, 1870-1876. https://doi.org/10.1016/j.wasman.2006.07.026
  5. Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T. and Queneudec, M. (2013), "Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions", J. Constr. Build. Mater., 47, 146-158. https://doi.org/10.1016/j.conbuildmat.2013.05.037
  6. Bhattacharya, A.K. (2005), "Scope of concrete roads in India", Keynote address at National workshop on sustainability of road infrastructure-Scope of concrete roads jointly organized by CMA India and ICI, Kolkata.
  7. Cai, J.W., Zhang, S.B., Hou, G.X. and Wang, C.M. (2009), "Effects of ferrous mill tailings as aggregates on workability and strength of concrete", J. Wuhan Univ. Technol., 31(7), 104-107.
  8. Cao, W. (2007), "Study on properties of recycled tire rubber modified asphalt mixtures using dry process", J. Constr. Build. Mater., 21, 1011-1015. https://doi.org/10.1016/j.conbuildmat.2006.02.004
  9. Chakravarthy, S.M. and Kadiyalli, L.R. (1989), "Economics of concrete roads", Ind. Concrete J., 63, 239-243.
  10. Chandra, S. and Berntsson, L. (2002), Lightweight Aggregate Concrete, Noyes Publications/William Andrew Publishing, NY.
  11. CMA (2007), "Fuel saving on concrete pavement", http://www.cmaindia.org, Cement Manufacturers Association India.
  12. CPAM (2012), http://www.concreteisbetter.com/vs.html, Concrete Paving Association of Minnesota.
  13. da Silvaa, F.L., Araujoa, F.G.S. and Teixeiraa, M.P. (2014), "Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic", J. Ceram. Int., 40, 16085-16089. https://doi.org/10.1016/j.ceramint.2014.07.145
  14. Das, B., Reddy, P.S.R. and Misra, V.N. (2002), "Recovery of iron values from tailing dumps adopting hydrocyclone and magnetic separation techniques", J. Australas Inst. Min. Metal., 2, 285-289.
  15. Das, S.K., Kumar, S. and Ramachandrarao, P. (2000), "Exploitation of iron ore for the development of ceramic tiles", J. Waste Manage., 20, 725-729. https://doi.org/10.1016/S0956-053X(00)00034-9
  16. Dovi, V.G., Friedler, F., Huisingh, D. and Kleme, J.J. (2009), "Cleaner energy for sustainable future", J. Clean. Product., 17, 889-895. https://doi.org/10.1016/j.jclepro.2009.02.001
  17. Duan, P., Yan, C., Zhou, W. and Ren, D. (2016), "Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle", J. Constr. Build. Mater., 118, 76-88. https://doi.org/10.1016/j.conbuildmat.2016.05.059
  18. Dudka, S. and Adriano, D.C. (1997), "Environmental impacts of metal ore mining and processing: a review", J. Environ. Qual., 26, 590-602.
  19. Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)
  20. Fan, J., Cao, D., Jing, Z., Zhang, Y., Pu, L. and Jing, Y. (2014), "Synthesis and microstructure analysis of autoclaved aerated concrete with carbide slag addition", J. Wuhan Univ. Technol., 10(29), 1005-1010.
  21. Fontes, W.C., Mendes, J.C., Da Silva, S.N. and Peixoto, R.A.F. (2016), "Mortars for laying and coating produced with iron ore tailings from tailing dams", J. Constr. Build. Mater., 112, 988-995. https://doi.org/10.1016/j.conbuildmat.2016.03.027
  22. Ganjian, E., Khorami, M. and Maghsoudi, A.A. (2009), "Scrap-tyre-rubber replacement for aggregate and filler in concrete", J. Constr. Build. Mater., 23(5), 1828-1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020
  23. Gul, R., Okuyucu, E., Turkmen, I. and Aydin, A.C. (2007), "Thermo-mechanical properties of fiber reinforced raw perlite concrete", J. Mater. Lett., 61, 5145-5149. https://doi.org/10.1016/j.matlet.2007.04.050
  24. Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fibre concrete with and without silica fume", J. Clean. Product., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081
  25. Hernandez-Olivares, F. and Baluenga, G. (2004), "Fire performance of recycled rubber- filled high-strength concrete", J. Cement Concrete Res., 34, 109-117. https://doi.org/10.1016/S0008-8846(03)00253-9
  26. http://www.allindiarubber.net/
  27. http://www.ce.memphis.edu/1101/notes/concrete/PCA_manual/Chap06.pdf
  28. https://en.wikipedia.org/wiki/Iron_ore
  29. https://www.cia.gov/library/ publications/the-world-factbook/geos/in.html
  30. Huang, X., Ranade, R., Ni, W. and Li, V. (2013), "Development of green engineered cementitious composites using iron ore tailings as aggregates", J. Constr. Build. Mater., 44, 757-764. https://doi.org/10.1016/j.conbuildmat.2013.03.088
  31. Huang, X.Y., Ni, W., Cui, W.H., Wang, Z.J. and Zhu, L.P. (2012), "Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag", J. Constr. Build. Mater., 27, 1-5. https://doi.org/10.1016/j.conbuildmat.2011.08.034
  32. Ismail, Z.Z. and Al-Hashmi, E.A. (2008), "Use of waste plastic in concrete mixture as aggregate replacement", J. Waste Manage., 28, 2041-2047. https://doi.org/10.1016/j.wasman.2007.08.023
  33. Juwarkar, A.A., Singh, S.K., Dubay, K. and Nimje, M. (2003), "Reclamation of iron mine spoil dumps using integrated biotechnological approach", Proceedings of the National Seminar on Status of Environmental Management in Mining Industry, BHU, 197-212.
  34. Kardos, A.J. and Durham, S.A. (2015), "Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications", J. Constr. Build. Mater., 98, 832-845. https://doi.org/10.1016/j.conbuildmat.2015.08.065
  35. Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
  36. Kumar, S., Gupta, R.C. and Shrivastava, S. (2016), "Strength, abrasion and permeability studies on cement concrete containing quartz sandstone coarse aggregates", J. Constr. Build. Mater., 125, 884-891. https://doi.org/10.1016/j.conbuildmat.2016.08.106
  37. Kurama, H., Topcu, I.B. and Karakurt, C. (2009), "Properties of the autoclaved aerated concrete produced from coal bottom ash", J. Mater. Proc. Technol., 209(2), 767-773. https://doi.org/10.1016/j.jmatprotec.2008.02.044
  38. Li, C., Sun, H.H., Bai, J. and Li, L.T. (2010), "Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting", J. Hazard. Mater., 174(1-3), 71-77. https://doi.org/10.1016/j.jhazmat.2009.09.018
  39. Li, D.Z., Ni, W., Zhang, J.W., Wu, H. and Zhang, Y.Y. (2011), "Phase transformation of iron ore tailings during autoclaved curing", J. Chin. Ceram. Soc., 39(4), 708-804.
  40. Li, M. and Li, V.C. (2009), "Influence of material ductility on the performance of concrete repair", ACI Mater. J., 106(5), 419-428.
  41. Licsko, I., Lois, L. and Szebenyi, G. (1999), "Tailings as a source of environmental pollution", J. Water Sci. Technol., 39(10-11), 333-336. https://doi.org/10.2166/wst.1999.0677
  42. Liu, F., Meng, L.Y., Ning, G.F. and Li, L.J. (2015), "Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement", J. Constr. Build. Mater., 95, 207-217. https://doi.org/10.1016/j.conbuildmat.2015.07.042
  43. Liwu, M. and Min, D. (2006), "Thermal behavior of cement matrix with high-volume mineral admixtures at early hydration age", J. Cement Concrete Res., 36, 1992-1998. https://doi.org/10.1016/j.cemconres.2006.07.002
  44. Lottermoser, B.G. (2011), "Recycling, reuse and rehabilitation of mine wastes", Elem., 7(6), 405-410.. https://doi.org/10.2113/gselements.7.6.405
  45. Ma, B.G., Cai, L.X., Li, X.G. and Jian, S.W. (2016), "Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products", J. Clean. Prod., 127, 162-171. https://doi.org/10.1016/j.jclepro.2016.03.172
  46. Maiti, S.K., Nandhini, S. and Das, M. (2005), "Accumulation of metals by naturally growing herbaceous and tree species in iron ore tailings", Int. J. Environ. Stud., 62(5), 595-603.
  47. Meagher, T., Shanahan, N., Buidens, D., Riding, K.A. and Zayed, A. (2015), "Effects of chloride and chloride-free accelerators combined with typical admixtures on the early-age cracking risk of concrete repair slabs", J. Constr. Build. Mater., 94, 270-279. https://doi.org/10.1016/j.conbuildmat.2015.07.003
  48. Mirza, W.H. and Al-Noury, S.I. (1986), "Utilisation of Saudi sands for aerated concrete production", Int. J. Cement Compos. Light Weight Concrete, 8(2), 81-85. https://doi.org/10.1016/0262-5075(86)90002-3
  49. Moreno, L. and Neretnieks, I. (2006), "Long-term environmental impact of tailings deposits". J. Hydrometal., 83(3), 176-183. https://doi.org/10.1016/j.hydromet.2006.03.052
  50. MORTH 2012A: www.morth.nic.in/Annual Report 2011-12.
  51. Mostafa, N.Y. (2005), "Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete", J. Cement Concrete Res., 35(7), 1349-1357. https://doi.org/10.1016/j.cemconres.2004.10.011
  52. Naik, T.R. (2008), "Sustainability of concrete", Pract. Period. Struct. Des. Constr., 13(2), 98-103. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:2(98)
  53. Oikonomou, N. and Mavridou, S. (2009), "Improvement of choloride ion penetration resistance in cement mortars modified with rubber from worn automobiles tires", J. Cement Concrete Compos., 31, 403-407. https://doi.org/10.1016/j.cemconcomp.2009.04.004
  54. Oktay, H., Yumrutas, R. and Akpolat, A. (2015), "Mechanical and thermo-physical properties of lightweight aggregate concretes", J. Constr. Build. Mater., 96, 217-225. https://doi.org/10.1016/j.conbuildmat.2015.08.015
  55. Omar, O.M., Elhameed, G.D.A., Sherif, M.A. and Mohamadien, H.A. (2012), "Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties", Hous. Board Nat. Res. Center, 8, 193-203.
  56. Park, T.S. (2003), "Application of construction and building debris as base and subbase materials in rigid pavement", J. Transp. Eng., 129(5), 558-563. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(558)
  57. Raghavan, D., Huynh, H. and Ferraris, C.F. (1998), "Workability, mechanical properties and chemical stability of a recycled tire rubber-filled cementitious composite", J. Mater. Sci., 33(7), 1745-1752. https://doi.org/10.1023/A:1004372414475
  58. Ram Chandar, K., Gayana, B.C. and Sainath, V. (2016), "Experimental investigation for partial replacement of fine aggregates in concrete with sandstone", J. Adv. Concrete Constr., 4(4), 243-261. https://doi.org/10.12989/acc.2016.4.4.243
  59. Ram Chandar, K., Raghunandan, M.E. and Manjunath, B. (2016), "Partial replacement of fine aggregates with laterite in GGBS-blended-concrete", J. Adv. Concrete Constr., 4(3), 221-230. https://doi.org/10.12989/acc.2016.4.3.221
  60. Ramanaidou, E.R. and Wells, M.A. (2014), Sedimentary Hosted Iron Ore, Eds. Holland, H.D. and Turekian, K.K., Treatise on Geochemistry, Second Edition, Elsevier, Oxford.
  61. Ravikumar, C.M., Kumar, A., Prashanth, M.H. and Reddy, D.V. (2012), "Experimental studies on iron ore tailings based interlocking paver blocks", Int. J. Earth Sci. Eng., 5(3), 501-504.
  62. Sastry, V.R. and Ram Chandar, K. (2013), "Dump stability analysis of an open cast coal mining project", Min. Eng. J., 15(1), 16-23.
  63. Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M. A. (2011), "Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete", J. Energy Build., 43, 671-676. https://doi.org/10.1016/j.enbuild.2010.11.008
  64. Shaikh, F., Kerai, S. and Kerai, S. (2015), "Effect of micro silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)", J. Adv. Concrete Constr., 3, 317-331. https://doi.org/10.12989/acc.2015.3.4.317
  65. Shettima, A.U., Hussin, M.W., Ahmad, Y. and Mirza, J. (2016), "Evaluation of iron ore tailings as replacement for fine aggregate in concrete", Constr. Build. Mater., 120, 72-79. https://doi.org/10.1016/j.conbuildmat.2016.05.095
  66. Shetty, K.K., Nayak, G. and Vijayan, V. (2014), "Effect of red mud and iron ore tailings on the strength of self-compacting concrete", Eur. Scientif. J., 10(21), 168-176.
  67. Siddique, R. (2014), "Utilization of industrial by-products in concrete", Procedia Eng., 95, 335-347. https://doi.org/10.1016/j.proeng.2014.12.192
  68. Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber-An overview", J. Waste Manage., 24, 563-569. https://doi.org/10.1016/j.wasman.2004.01.006
  69. Silva, F.L., Araujo, F.G.S., Texeira, M.P., Gomes, R.C. and Vonkruger, F.L. (2014), "Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic", J. Ceram. Int., 40, 16085-16089. https://doi.org/10.1016/j.ceramint.2014.07.145
  70. Sirkeci, A.A., Gul, A. and Bulut, G. (2006), "Recovery of Co, Ni and Cu from the tailings of divrigi iron ore concentrator", J. Min. Proc. Extract. Metal. Rev., 27(2), 131-141. https://doi.org/10.1080/08827500600563343
  71. Skarzynska, K.M. (1995a), "Reuse of coal mining wastes in civil engineering. part 1. properties of minestone", J. Waste Manage., 15(2), 3-42. https://doi.org/10.1016/0956-053X(95)00004-J
  72. Skarzynska, K.M. (1995b), "Reuse of coal mining wastes in civil engineering. part 2. utilization of minestone", J. Waste Manage., 15(2), 83-126. https://doi.org/10.1016/0956-053X(95)00008-N
  73. Son, K.S., Hajirasouliha, I. and Pilakoutas, K. (2011), "Strength and deformability of waste tyre rubber filled reinforced concrete columns", J. Constr. Build. Mater., 25(1), 218-226. https://doi.org/10.1016/j.conbuildmat.2010.06.035
  74. Sun, J.S., Dou, Y.M., Chen, Z.X. and Yang, C.F. (2011), "Experimental study on the performances of cement stabilized iron ore tailing gravel in highway application", J. Appl. Mech. Mater., 97-98, 425-428. https://doi.org/10.4028/www.scientific.net/AMM.97-98.425
  75. Sunil, B.M., Manjunatha, L.S., Lolitha, R. and Subhash, C.Y. (2015), "Potential use of mine tailings and fly ash in concrete", J. Adv. Concrete Constr., 3, 55-69. https://doi.org/10.12989/acc.2015.3.1.055
  76. Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", J. Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074
  77. Thomas, B.S., Gupta, R.C., Mehra, P. and Kumar, S. (2015), "Performance of high strength rubberized concrete in aggressive environment", J. Constr. Build. Mater., 83, 320-326. https://doi.org/10.1016/j.conbuildmat.2015.03.012
  78. Topcu, I.B. (1995), "The properties of rubberized concrete", J. Cement Concrete Res., 25, 304-310. https://doi.org/10.1016/0008-8846(95)00014-3
  79. USGS Mineral Commodity Summaries, 2011.
  80. USGS Mineral Commodity Summaries, 2013
  81. Wang, C.L., Ni, W., Zhang, S.Q., Wang, S., Gai, G.S. and Wang, W.K. (2016), "Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings", J. Constr. Build. Mater., 104, 109-115. https://doi.org/10.1016/j.conbuildmat.2015.12.041
  82. Wang, J.Z. and Wu, C. (2000), "Effect of energy saving and formation of portland cement clinker using irontailings as raw materials", J. Shenyang Arch. Civil Eng. Inst., 16(2), 112-114.
  83. Yang, C., Cui, C., Qin, J. and Cui, X. (2014), "Characteristics of the fired bricks with low-silicon iron tailings", J. Constr. Build. Mater., 70, 36-42. https://doi.org/10.1016/j.conbuildmat.2014.07.075
  84. Yellishetty, M., Karpe, V., Reddy, E.H. and Subhash, K.N. (2008), "Reuse of iron ore mineral wastes in civil engineering constructions: A case study - resources", J. Conserv. Recycl., 52, 1283-1289. https://doi.org/10.1016/j.resconrec.2008.07.007
  85. Zhang, S. (2006), "Current situation and comprehensive utilization of iron ore tailing resources", J. Min. Sci., 42(4), 403-408. https://doi.org/10.1007/s10913-006-0069-9
  86. Zhao, S., Fan, J. and Sun, W. (2014), "Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete", J. Constr. Build. Mater., 50, 540-548. https://doi.org/10.1016/j.conbuildmat.2013.10.019
  87. Zheng, Y.C., Ni, W., Xu, L., Li, D.Z. and Yang, J.H. (2010), "Mechano-chemical activation of iron ore tailings and preparation of high-strength construction materials", J. Univ. Sci. Technol. Beijing, 32(4), 504-507.
  88. Zhu, L.P., Ni, W., Huang, D., Hui, M. and Gao, S.J. (2011), "Whole-tailings backfilling materials with fly ash", J. Univ. Sci. Technol. Beijing, 33(10), 190-1196.

Cited by

  1. Utilization of tailings in cement and concrete: A review vol.26, pp.1, 2018, https://doi.org/10.1515/secm-2019-0029
  2. Utilization of tailings in cement and concrete: A review vol.26, pp.1, 2018, https://doi.org/10.1515/secm-2019-0029
  3. Utilization of iron tailings as fine aggregates in low-grade cement concrete pavement vol.479, pp.None, 2019, https://doi.org/10.1088/1757-899x/479/1/012053
  4. Preparation and properties of endothermic functional ceramics with iron tailings as raw materials vol.7, pp.5, 2018, https://doi.org/10.1088/2053-1591/ab8b8a
  5. Zero-waste recycling method for textile dyeing sludge by magnetizing roasting-magnetic separation process and ceramic filter preparation vol.74, pp.12, 2020, https://doi.org/10.1007/s11696-020-01249-4
  6. Size Reduction Characterization of Underground Mine Tailings: A Case Study on Sandstones vol.30, pp.1, 2021, https://doi.org/10.1007/s11053-020-09707-2
  7. Pozzolanicity identification in mortars by computational analysis of micrographs vol.27, pp.2, 2021, https://doi.org/10.12989/cac.2021.27.2.175
  8. Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete vol.11, pp.5, 2021, https://doi.org/10.3390/cryst11050558
  9. The Potential Re-Use of Saudi Mine Tailings in Mine Backfill: A Path towards Sustainable Mining in Saudi Arabia vol.13, pp.11, 2018, https://doi.org/10.3390/su13116204