References
- Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
- Brunger, A.T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-475. https://doi.org/10.1038/355472a0
- Buchner, M., Fuchs, S., Prinz, G., Pfeifer, D., Bartholome, K., Burger, M., Chevalier, N., Vallat, L., Timmer, J., Gribben, J.G., et al. (2009). Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 69, 5424-5432. https://doi.org/10.1158/0008-5472.CAN-08-4252
- Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S. and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21. https://doi.org/10.1107/S0907444909042073
- Cheng, S.H., Coffey, G., Zhang, X.H.N., Shaknovich, R., Song, Z.B., Lu, P., Pandey, A., Melnick, A.M., Sinha, U. and Wang, Y.L. (2011). SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 118, 6342-6352. https://doi.org/10.1182/blood-2011-02-333773
- Choi, J.S., Hwang, H.J., Kim, S.W., Lee, B.I., Lee, J., Song, H.J., Koh, J.S., Kim, J.H. and Lee, P.H. (2015). Highly potent and selective pyrazolylpyrimidines as Syk kinase inhibitors. Bioorg. Med. Chem. Lett. 25, 4441-4446. https://doi.org/10.1016/j.bmcl.2015.09.011
- Coffey, G., Betz, A., DeGuzman, F., Pak, Y., Inagaki, M., Baker, D.C., Hollenbach, S.J., Pandey, A. and Sinha, U. (2014). The novel kinase inhibitor PRT062070 (Cerdulatinib) demonstrates efficacy in models of autoimmunity and B-cell cancer. J. Pharmacol. Exp. Ther. 351, 538-548. https://doi.org/10.1124/jpet.114.218164
- Das J. (2010) Activation or tolerance of natural killer cells is modulated by ligand quality in a nonmonotonic manner. Biophys. J. 99, 2028-2037 https://doi.org/10.1016/j.bpj.2010.07.061
- Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501. https://doi.org/10.1107/S0907444910007493
- Geahlen, R.L. (2014). Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci. 35, 414-422. https://doi.org/10.1016/j.tips.2014.05.007
- Ghotra, V.P.S., He, S.N., van der Horst, G., Nijhoff, S., de Bont, H., Lekkerkerker, A., Janssen, R., Jenster, G., van Leenders, G.J.L.H., Hoogland, A.M.M., et al. (2015). SYK Is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res. 75, 230-240.
- Hoemann, M., Wilson, N., Argiriadi, M., Banach, D., Burchat, A., Calderwood, D., Clapham, B., Cox, P., Duignan, D.B., Konopacki, D., et al. (2016). Synthesis and optimization of furano[3,2-d]pyrimidines as selective spleen tyrosine kinase (Syk) inhibitors. Bioorg. Med. Chem. Lett. 26, 5562-5567. https://doi.org/10.1016/j.bmcl.2016.09.077
- Huang, Y.H., Zhang, Y.J., Fan, K.X., Dong, G.Q., Li, B.H., Zhang, W.N., Li, J. and Sheng, C.Q. (2017). Discovery of new Syk inhibitors through structure-based virtual screening. Bioorg. Med. Chem. Lett. 27, 1776-1779. https://doi.org/10.1016/j.bmcl.2017.02.060
- Krissinel, E. and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256-2268. https://doi.org/10.1107/S0907444904026460
- Lee, S.J., Choi, J.S., Han, B.G., Kim, H.S., Song, H.J., Lee, J., Nam, S., Goh, S.H., Kim, J.H., Koh, J.S., et al. (2016). Crystal structures of spleen tyrosine kinase in complex with novel inhibitors: structural insights for design of anticancer drugs. FEBS J. 283, 3613-3625. https://doi.org/10.1111/febs.13831
- Liu, Y. and Gray, N.S. (2006). Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2, 358-364. https://doi.org/10.1038/nchembio799
- Lovering, F., McDonald, J., Whitlock, G.A., Glossop, P.A., Phillips, C., Bent, A., Sabnis, Y., Ryan, M., Fitz, L., Lee, J., et al. (2012). Identification of type-II inhibitors using kinase structures. Chem. Biol. Drug. Des. 80, 657-664. https://doi.org/10.1111/j.1747-0285.2012.01443.x
- Lucas, M.C., Goldstein, D.M., Hermann, J.C., Kuglstatter, A., Liu, W., Luk, K.C., Padilla, F., Slade, M., Villasenor, A.G., Wanner, J., et al. (2012). Rational design of highly selective spleen tyrosine kinase inhibitors. J. Med. Chem. 55, 10414-10423. https://doi.org/10.1021/jm301367c
- MacFarlane, L.A. and Todd, D.J. (2014). Kinase inhibitors: the next generation of therapies in the treatment of rheumatoid arthritis. Int. J. Rheum. Dis. 17, 359-368. https://doi.org/10.1111/1756-185X.12293
- Mocsai, A., Ruland, J. and Tybulewicz, V.L. (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387-402. https://doi.org/10.1038/nri2765
- Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method. Enzymol. 276, 307-326.
- Perova, T., Grandal, I., Nutter, L.M., Papp, E., Matei, I.R., Beyene, J., Kowalski, P.E., Hitzler, J.K., Minden, M.D., Guidos, C.J., et al. (2014). Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 236ra262.
- Prinos, P., Garneau, D., Lucier, J.F., Gendron, D., Couture, S., Boivin, M., Brosseau, J.P., Lapointe, E., Thibault, P., Durand, M., et al. (2011). Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol. 18, 673-679. https://doi.org/10.1038/nsmb.2040
- Rinaldi, A., Kwee, I., Taborelli, M., Largo, C., Uccella, S., Martin, V., Poretti, G., Gaidano, G., Calabrese, G., Martinelli, G., et al. (2006). Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Brit. J. Haematol. 132, 303-316. https://doi.org/10.1111/j.1365-2141.2005.05883.x
- Sharman, J., Hawkins, M., Kolibaba, K., Boxer, M., Klein, L., Wu, M., Hu, J., Abella, S. and Yasenchak, C. (2015) An open-label phase 2 trial of entospletinib (GS-9973), a selective Syk inhibitor, in chronic lymphocytic leukemia. Blood 125, 2336-2343. https://doi.org/10.1182/blood-2014-08-595934
- Shen, J.Y., Li, X.K., Zhang, Z., Luo, J.F., Long, H.Y., Tu, Z.C., Zhou, X.P., Ding, K. and Lu, X.Y. (2016). 3-aminopyrazolopyrazine derivatives as spleen tyrosine kinase inhibitors. Chem. Biol. Drug. Des. 88, 690-698. https://doi.org/10.1111/cbdd.12798
- Singh, R., Masuda, E.S. and Payan, D.G. (2012). Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J. Med. Chem. 55, 3614-3643. https://doi.org/10.1021/jm201271b
- Tang, F., Chen, F., Ling, X., Huang, Y., Zheng, X., Tang, Q. and Tan, X. (2015). Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells. Mediators Inflamm. 463530, 1-9.
- Thoma, G., Blanz, J., Buhlmayer, P., Druckes, P., Kittelmann, M., Smith, A.B., van Eis, M., Vangrevelinghe, E., Zerwes, H.G., Che, J.J., et al. (2014). Syk inhibitors with high potency in presence of blood. Bioorg. Med. Chem. Lett. 24, 2278-2282. https://doi.org/10.1016/j.bmcl.2014.03.075
- Tina, K.G., Bhadra, R. and Srinivasan, N. (2007). PIC: Protein Interactions Calculator. Nucleic Acids Res. 35, W473-W476. https://doi.org/10.1093/nar/gkm423
- Vagin, A. and Teplyakov, A. (2010). Molecular replacement with MOLREP. Acta crystallographica. Section D, Biological crystallography 66, 22-25.
- Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F. and Murshudov, G.N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184-2195. https://doi.org/10.1107/S0907444904023510
- Wallace, A.C., Laskowski, R.A. and Thornton, J.M. (1995). Ligplot - a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 8, 127-134. https://doi.org/10.1093/protein/8.2.127