DOI QR코드

DOI QR Code

Crystal Structures of Spleen Tyrosine Kinase in Complex with Two Novel 4-Aminopyrido[4,3-d] Pyrimidine Derivative Inhibitors

  • Received : 2017.09.15
  • Accepted : 2018.04.06
  • Published : 2018.06.30

Abstract

Spleen tyrosine kinase (SYK) is a cytosolic non-receptor protein tyrosine kinase. Because SYK mediates key receptor signaling pathways involving the B cell receptor and Fc receptors, SYK is an attractive target for autoimmune disease and cancer treatments. To date, representative oral SYK inhibitors, including fostamatinib (R406 or R788), entospletinib (GS-9973), cerdulatinib (PRT062070), and TAK-659, have been assessed in clinical trials. Here, we report the crystal structures of SYK in complex with two newly developed inhibitors possessing 4-aminopyrido[4,3-D]pyrimidine moieties (SKI-G-618 and SKI-O-85). One SYK inhibitor (SKI-G-618) exhibited moderate inhibitory activity against SYK, whereas the other inhibitor (SKI-O-85) exhibited a low inhibitory profile against SYK. Binding mode analysis indicates that a highly potent SYK inhibitor might be developed by modifying and optimizing the functional groups that interact with Leu377, Gly378, and Val385 in the G-loop and the nearby region in SYK. In agreement with our structural analysis, one of our SYK inhibitor (SKI-G-618) shows strong inhibitory activities on the ${\beta}$-hexosaminidase release and phosphorylation of SYK/Vav in RBL-2H3 cells. Taken together, our findings have important implications for the design of high affinity SYK inhibitors.

Keywords

References

  1. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
  2. Brunger, A.T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-475. https://doi.org/10.1038/355472a0
  3. Buchner, M., Fuchs, S., Prinz, G., Pfeifer, D., Bartholome, K., Burger, M., Chevalier, N., Vallat, L., Timmer, J., Gribben, J.G., et al. (2009). Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 69, 5424-5432. https://doi.org/10.1158/0008-5472.CAN-08-4252
  4. Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S. and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21. https://doi.org/10.1107/S0907444909042073
  5. Cheng, S.H., Coffey, G., Zhang, X.H.N., Shaknovich, R., Song, Z.B., Lu, P., Pandey, A., Melnick, A.M., Sinha, U. and Wang, Y.L. (2011). SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 118, 6342-6352. https://doi.org/10.1182/blood-2011-02-333773
  6. Choi, J.S., Hwang, H.J., Kim, S.W., Lee, B.I., Lee, J., Song, H.J., Koh, J.S., Kim, J.H. and Lee, P.H. (2015). Highly potent and selective pyrazolylpyrimidines as Syk kinase inhibitors. Bioorg. Med. Chem. Lett. 25, 4441-4446. https://doi.org/10.1016/j.bmcl.2015.09.011
  7. Coffey, G., Betz, A., DeGuzman, F., Pak, Y., Inagaki, M., Baker, D.C., Hollenbach, S.J., Pandey, A. and Sinha, U. (2014). The novel kinase inhibitor PRT062070 (Cerdulatinib) demonstrates efficacy in models of autoimmunity and B-cell cancer. J. Pharmacol. Exp. Ther. 351, 538-548. https://doi.org/10.1124/jpet.114.218164
  8. Das J. (2010) Activation or tolerance of natural killer cells is modulated by ligand quality in a nonmonotonic manner. Biophys. J. 99, 2028-2037 https://doi.org/10.1016/j.bpj.2010.07.061
  9. Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501. https://doi.org/10.1107/S0907444910007493
  10. Geahlen, R.L. (2014). Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci. 35, 414-422. https://doi.org/10.1016/j.tips.2014.05.007
  11. Ghotra, V.P.S., He, S.N., van der Horst, G., Nijhoff, S., de Bont, H., Lekkerkerker, A., Janssen, R., Jenster, G., van Leenders, G.J.L.H., Hoogland, A.M.M., et al. (2015). SYK Is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res. 75, 230-240.
  12. Hoemann, M., Wilson, N., Argiriadi, M., Banach, D., Burchat, A., Calderwood, D., Clapham, B., Cox, P., Duignan, D.B., Konopacki, D., et al. (2016). Synthesis and optimization of furano[3,2-d]pyrimidines as selective spleen tyrosine kinase (Syk) inhibitors. Bioorg. Med. Chem. Lett. 26, 5562-5567. https://doi.org/10.1016/j.bmcl.2016.09.077
  13. Huang, Y.H., Zhang, Y.J., Fan, K.X., Dong, G.Q., Li, B.H., Zhang, W.N., Li, J. and Sheng, C.Q. (2017). Discovery of new Syk inhibitors through structure-based virtual screening. Bioorg. Med. Chem. Lett. 27, 1776-1779. https://doi.org/10.1016/j.bmcl.2017.02.060
  14. Krissinel, E. and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256-2268. https://doi.org/10.1107/S0907444904026460
  15. Lee, S.J., Choi, J.S., Han, B.G., Kim, H.S., Song, H.J., Lee, J., Nam, S., Goh, S.H., Kim, J.H., Koh, J.S., et al. (2016). Crystal structures of spleen tyrosine kinase in complex with novel inhibitors: structural insights for design of anticancer drugs. FEBS J. 283, 3613-3625. https://doi.org/10.1111/febs.13831
  16. Liu, Y. and Gray, N.S. (2006). Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2, 358-364. https://doi.org/10.1038/nchembio799
  17. Lovering, F., McDonald, J., Whitlock, G.A., Glossop, P.A., Phillips, C., Bent, A., Sabnis, Y., Ryan, M., Fitz, L., Lee, J., et al. (2012). Identification of type-II inhibitors using kinase structures. Chem. Biol. Drug. Des. 80, 657-664. https://doi.org/10.1111/j.1747-0285.2012.01443.x
  18. Lucas, M.C., Goldstein, D.M., Hermann, J.C., Kuglstatter, A., Liu, W., Luk, K.C., Padilla, F., Slade, M., Villasenor, A.G., Wanner, J., et al. (2012). Rational design of highly selective spleen tyrosine kinase inhibitors. J. Med. Chem. 55, 10414-10423. https://doi.org/10.1021/jm301367c
  19. MacFarlane, L.A. and Todd, D.J. (2014). Kinase inhibitors: the next generation of therapies in the treatment of rheumatoid arthritis. Int. J. Rheum. Dis. 17, 359-368. https://doi.org/10.1111/1756-185X.12293
  20. Mocsai, A., Ruland, J. and Tybulewicz, V.L. (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387-402. https://doi.org/10.1038/nri2765
  21. Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method. Enzymol. 276, 307-326.
  22. Perova, T., Grandal, I., Nutter, L.M., Papp, E., Matei, I.R., Beyene, J., Kowalski, P.E., Hitzler, J.K., Minden, M.D., Guidos, C.J., et al. (2014). Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 236ra262.
  23. Prinos, P., Garneau, D., Lucier, J.F., Gendron, D., Couture, S., Boivin, M., Brosseau, J.P., Lapointe, E., Thibault, P., Durand, M., et al. (2011). Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol. 18, 673-679. https://doi.org/10.1038/nsmb.2040
  24. Rinaldi, A., Kwee, I., Taborelli, M., Largo, C., Uccella, S., Martin, V., Poretti, G., Gaidano, G., Calabrese, G., Martinelli, G., et al. (2006). Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Brit. J. Haematol. 132, 303-316. https://doi.org/10.1111/j.1365-2141.2005.05883.x
  25. Sharman, J., Hawkins, M., Kolibaba, K., Boxer, M., Klein, L., Wu, M., Hu, J., Abella, S. and Yasenchak, C. (2015) An open-label phase 2 trial of entospletinib (GS-9973), a selective Syk inhibitor, in chronic lymphocytic leukemia. Blood 125, 2336-2343. https://doi.org/10.1182/blood-2014-08-595934
  26. Shen, J.Y., Li, X.K., Zhang, Z., Luo, J.F., Long, H.Y., Tu, Z.C., Zhou, X.P., Ding, K. and Lu, X.Y. (2016). 3-aminopyrazolopyrazine derivatives as spleen tyrosine kinase inhibitors. Chem. Biol. Drug. Des. 88, 690-698. https://doi.org/10.1111/cbdd.12798
  27. Singh, R., Masuda, E.S. and Payan, D.G. (2012). Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J. Med. Chem. 55, 3614-3643. https://doi.org/10.1021/jm201271b
  28. Tang, F., Chen, F., Ling, X., Huang, Y., Zheng, X., Tang, Q. and Tan, X. (2015). Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells. Mediators Inflamm. 463530, 1-9.
  29. Thoma, G., Blanz, J., Buhlmayer, P., Druckes, P., Kittelmann, M., Smith, A.B., van Eis, M., Vangrevelinghe, E., Zerwes, H.G., Che, J.J., et al. (2014). Syk inhibitors with high potency in presence of blood. Bioorg. Med. Chem. Lett. 24, 2278-2282. https://doi.org/10.1016/j.bmcl.2014.03.075
  30. Tina, K.G., Bhadra, R. and Srinivasan, N. (2007). PIC: Protein Interactions Calculator. Nucleic Acids Res. 35, W473-W476. https://doi.org/10.1093/nar/gkm423
  31. Vagin, A. and Teplyakov, A. (2010). Molecular replacement with MOLREP. Acta crystallographica. Section D, Biological crystallography 66, 22-25.
  32. Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F. and Murshudov, G.N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184-2195. https://doi.org/10.1107/S0907444904023510
  33. Wallace, A.C., Laskowski, R.A. and Thornton, J.M. (1995). Ligplot - a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 8, 127-134. https://doi.org/10.1093/protein/8.2.127