DOI QR코드

DOI QR Code

A Study on the Applicability of Water Footprint Methodology in Korea by Analyzing Domestic Water Resources Statistics

국내 물 자원 통계자료 분석을 통한 물발자국 방법론 국내 적용 가능성 확인 연구

  • Kim, Sun Uk (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office) ;
  • Jo, Seo Weon (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office) ;
  • Ahn, Jae Hyun (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office) ;
  • Lee, Han Woong (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office) ;
  • Yeon, Sung Mo (H.I.Pathway Co., LTD.)
  • 김선욱 (한국생산기술연구원 국가청정생산지원센터) ;
  • 조서원 (한국생산기술연구원 국가청정생산지원센터) ;
  • 안재현 (한국생산기술연구원 국가청정생산지원센터) ;
  • 이한웅 (한국생산기술연구원 국가청정생산지원센터) ;
  • 연성모 ((주)에이치아이피)
  • Received : 2018.04.27
  • Accepted : 2018.05.16
  • Published : 2018.06.30

Abstract

The water footprint is an important component of the Single Market for Green Product initiative based on the EU's Roadmap to a Resource Efficient Europe. In July 2014, the EU has established the International Standard for Water Footprint (ISO 14046) and Korea has complied with the Korean Industrial Standard (KS I ISO 14046) in April 2015. If a certification system based on the international standard (ISO 14046) is introduced, developing countries such as India and Vietnam, which are not equipped with bases, can become a trade barriers in exporting, so Korea should establish a strategy to reverse them. On the other hand, water footprints are designed to take into account local environmental impacts when compared to similar footprints (eg, carbon footprint) using LCA, so that products manufactured and manufactured in Korea will have an impact on domestic waters Should be considered. Therefore, the method of the water footprint should conform to the standard for compatibility with other countries. In order to consider the domestic water condition, it is necessary to identify suitable indicator or factor for estimating water footprint on Korea. For this purpose, this study analyzed the water footprint estimation study conducted at domestic and foreign based on international standards and through the analysis of statistical data related to domestic water resources, we confirmed the applicability of the water footprint methodology in Korea.

물발자국은 EU가 추진하고 있는 자원효율적인 유럽을 위한 로드맵(Roadmap to a Resource Efficient Europe)을 바탕으로 제시된 친환경제품 시장통합정책(Single Market for Green Product initiative)의 중요한 구성요소이다. 2014년 7월 EU 회원국의 주도로 물발자국 산정 국제표준(ISO 14046)이 제정되었으며 우리나라도 한국산업표준(KS I ISO 14046)으로 2015년 4월 부합화를 완료하였다. 국제표준(ISO 14046)에 기반을 둔 인증제도가 도입되는 경우, 기반을 갖추지 못한 인도, 베트남 등의 개도국에게는 수출시 무역장벽이 될 수 있으므로 우리나라는 이를 역이용하기 위한 전략을 수립해야 한다. 한편, 물발자국은 전과정평가(LCA)를 적용한 유사 발자국(예, 탄소발자국)인증과 비교할 때 국지적(Local) 환경영향을 고려하도록 되어 있어, 우리나라에서 생산 및 제조되는 제품들은 우리나라 수역에 미치는 영향을 고려해야 한다. 따라서 물발자국 산정방법은 국내외 호환을 위해 표준에 적합해야 하며, 우리나라의 물 환경을 고려하기 위해서 우리나라 적합한 물발자국 산정계수들의 도출이 필요하다. 이를 위해 이 연구에서는 국제표준을 바탕으로, 현재 국내 외에서 진행된 물발자국 산정연구를 검토하고 국내 기존 물 자원 관련 통계자료 분석을 통해 물발자국 방법론의 국내 적용 가능성을 확인하였다.

Keywords

References

  1. Arjen, Y. H., Ashok, K. C., Maite, M. A., and Mesfin, M. M., The Water Footprint Assessment Manual Setting the Global Standard, Water Footprint Network (2014).
  2. ISO 14046:2014 Environmental Management - Water Footprint - Principles, Requirements and Guidelines (2014).
  3. Kim, Y. D., "Estimate and Apply Water Footprint for Sustainable Water Use," Ministry of Agriculture, Food and Rural Affairs (2014).
  4. ISO 14044:2006 Environmental Management - Life Cycle Assessment - Requirements and Guidelines (2006).
  5. ISO/TR 14073:2017 Environmental Management - Water Footprint - Illustrative Examples on How to Apply ISO 14046 (2017).
  6. Frischknecht, R., Steiner, R., and Jungbluth, N., The Ecological Scarcity Method-Eco-Factors 2006, A Method for Impact Assessment in LCA., Federal Office for the Environment, Bern, Swiss (2009).
  7. Pfister, S., Koehler, A., and Hellweg, S., "Assessing the Environmental Impacts of Freshwater Consumption in LCA," Environ. Sci. Technol., 43(11), 4098-4104 (2009). https://doi.org/10.1021/es802423e
  8. Ridoutt, B. G., and Pfister, S., "A New Footprint Calculation Method Integration Consumptive and Degradative Water Use into a Single Stand-Alone Indicator," Int. J. Life Cycle Assess, 18, 204-207 (2012).
  9. Pfister, S., and Bayer, P., "Monthly Water Stress: Spatially and Temporally Explicit Consumptive Water Footprint of Global Crop Production," J. Cleaner Production, 73, 52-62 (2013).
  10. Hoekstra, A. Y., and Mekonnen, M. M., Global Water Scarcity: The Monthly Blue Water Footprint Compared to Blue Water Availability for the World'S Major River Basins, Value of Water Research Report Series No. 53 (2011).
  11. Boulay, A. M., Bulle, C., Bayart, J. B., Deschenes, L., and Margni, M., "Regional Characterization of Freshwater Use in LCA: Modeling Direct Impacts on Human Health," Environ. Sci. Technol., 45, 8948-8957 (2011). https://doi.org/10.1021/es1030883
  12. Berger, M., Van der Ent, R., Eisner, S., Bach, V., and Finkbeiner, M., "Water Accounting and Vulnerability Evaluation: Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting," Environ. Sci. Technol., 48, 4521-4528 (2014). https://doi.org/10.1021/es404994t
  13. Presentation at the Annual Meeting SETAC Europe, Barcelona, WULCA, Spain (May 2015).
  14. Yano, S., Hanasaki, N., Itsubo, N., and Oki, T., "Water Scarcity Footprints by Considering the Differences in Water Sources," Sunstainability, 7, 9753-9772 (2015). https://doi.org/10.3390/su7089753
  15. Heijungs, R., Guinee, J. B., Huppes, G., Lankreijer, R. M., Udo de Haes, H. A., and Sleeswijk, W. A., Enviromental Life Cycle Assessments of Products, NOH Report 9266, Center of Environmental Science, Leiden, Netherlands (1992).
  16. Hauschild, M., and Wenzel, H., Environmental Assessment of Products. Volume 2: Scientific Backgrounds, Springer, US (1998).
  17. Huijbgrets, M., Life-cycle Impact Assessment of Acidifying and Eutrophying Air Pollutants, Caluculation of Equivalency Factors with RAINS-LCA, Draft Version, University of Amsterdam, Netherlands (1999).
  18. Seppala, J., Posch, M., Johansson, M., and Hettelingh, J. P., "Country-Dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based in Accumulated Exceedance as an impact category indicator," Int. J. Life Cycle Assess, 11(6), 403-416 (2006). https://doi.org/10.1065/lca2005.06.215
  19. Huijbregts, M., and Seppala, J., "Life Cycle Impact Assessment of Polluntants Causing Aquatic Eutrophication," Int. J. Life Cycle Assess, 6(6) 339-343 (2001). https://doi.org/10.1007/BF02978864
  20. Huijbregts, M., Priority Assessment of Toxic Substances in LCA, Development and Application of the Multi-Media Fate, Exposure and Effect Model USES-LCA, Project of Dutch Organisation for Scientific Research, University of Amsterdam, Netherlands (1999).
  21. Verones, F., Hanafiah, M. M., Pfister, S., Huijbregts, M., Pelletier, J. G., and Koehler, A., "Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments," Environ. Sci. Technol., 44, 9364-9369 (2011).
  22. Smakhtin, V., Revenga, C., and Doll, P., "A Pilot Global Assessment of Environmental Water Requirements and Scarcity," Water Int., 29(3), 307-317 (2004). https://doi.org/10.1080/02508060408691785