DOI QR코드

DOI QR Code

선박 배연탈질용 금속 구조체 기반 촉매 제조를 위한 코팅슬러리 최적화

Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas

  • 정해영 (한국생산기술연구원 에너지플랜트그룹) ;
  • 김태용 (한국생산기술연구원 에너지플랜트그룹) ;
  • 임은미 (한국생산기술연구원 에너지플랜트그룹) ;
  • 임동하 (한국생산기술연구원 에너지플랜트그룹)
  • Jeong, Haeyoung (Energy Plant R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Taeyong (Energy Plant R&D Group, Korea Institute of Industrial Technology) ;
  • Im, Eunmi (Energy Plant R&D Group, Korea Institute of Industrial Technology) ;
  • Lim, Dong-Ha (Energy Plant R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2018.05.14
  • 심사 : 2018.05.19
  • 발행 : 2018.06.30

초록

국제해사기구에서는 선박 배기가스 내 질소산화물($NO_x$) 배출에 대한 강화된 Tier III 규제가 2016년부터 적용됨에 따라 이를 대응하기 위한 노력이 필요하다. $NO_x$ 저감 방법으로 선택적 촉매 환원법(Selective catalytic reduction, SCR)을 주로 사용하고 있으며, 세라믹 허니컴 촉매를 주로 사용하고 있다. 그러나 기존의 세라믹 허니컴 촉매는 약한 강도로 인하여 운전상 문제가 발생하거나 유지 및 보수에 있어서도 어려움을 갖는 단점을 가지고 있다. 본 연구에서는 세라믹 허니컴 촉매의 단점들을 보완하기 위하여 높은 열적 안정성과 기계적 강도를 가짐과 동시에 배기가스의 다방향성 이동을 통한 낮은 배압효과 등의 장점을 가지는 금속 지지체를 적용하였다. 이러한 금속 지지체 상에 촉매를 담지하기 위하여 유 무기바인더 첨가를 통해 코팅슬러리를 제조하고, 이를 코팅, 건조 및 소성과정을 통해 금속 지지체 상에 견고하게 부착된 금속 지지체 기반 촉매를 제조하였다. 이러한 금속 지지체 기반 촉매는 $NO_x$ 성능평가와 초음파 및 낙하시험을 통한 접착 내구성 평가를 수행하였다. 특히, 무기바인더를 첨가한 MFC01경우 95% 이상의 $NO_x$ 전환율을 보였으며, 상용 세라믹 허니컴 촉매보다도 우수한 내구성을 보였다. 이러한 특성 및 성능평가를 통하여 개발된 금속 지지체 기반 촉매는 고효율, 고내구성을 가짐을 확인하였으며, 기존 세라믹 허니컴 촉매를 대체할 수 있는 선박용 배연탈질 촉매로서의 가능성을 확인하였다.

To reduce the environmental pollution by $NO_x$ from ship engine, International maritime organization (IMO) announced Tier III regulation, which is the emmision regulation of ship's exhaust gas in Emission control area (ECA). Selective catalytic reduction (SCR) process is the most commercial $De-NO_x$ system in order to meet the requirement of Tier III regulation. In generally, commercial ceramic honeycomb SCR catalyst has been installed in SCR reactor inside marine vessel engine. However, the ceramic honeycomb SCR catalyst has some serious issues such as low strength and easy destroution at high velocity of exhaust gas from the marine engine. For these reasons, we design to metallic structured catalyst in order to compensate the defects of the ceramic honeycomb catalyst for applying marine SCR system. Especially, metallic structured catalyst has many advantages such as robustness, compactness, lightness, and high thermal conductivity etc. In this study, in order to support catalyst on metal substrate, coating slurry is prepared by changing binder. we successfully fabricate the metallic structured catalyst with strong adhesion by coating, drying, and calcination process. And we carry out the SCR performance and durability such as sonication and dropping test for the prepared samples. The MFC01 shows above 95% of $NO_x$ conversion and much more robust and more stable compared to the commercial honeycomb catalyst. Based on the evaluation of characterization and performance test, we confirm that the proposed metallic structured catalyst in this study has high efficient and durability. Therefore, we suggest that the metallic structured catalyst may be a good alternative as a new type of SCR catalyst for marine SCR system.

키워드

참고문헌

  1. Roy, S., Hegde, M. S., and Madras G., "Catalysis for $NO_x$ Abatement," Appl. Energy, 86, 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
  2. Twigg, M. V., "Progess and Future Challenges In Controlling Automotive Exhaust Gas Emissions," Appl. Catal. B: Environ., 70, 2-15 (2007). https://doi.org/10.1016/j.apcatb.2006.02.029
  3. Almeida, L. C., Echave, F. J., Sanz, O., Centeno, M. A., Arzamendi, G., Gandia, L. M., Sousa-Aguiar, E. F., Odriozola, J. A., and Montes, M., "Fischer-Tropsch Synthesis in Microchannels," Chem. Eng. J., 167, 536-544 (2011). https://doi.org/10.1016/j.cej.2010.09.091
  4. Montebelli, A., Visconti, C. G., Groppi, G., Tronconi, E., Cristiani, C., Ferreira, C., and Kohler, S., "Method for the Catalytic Activation of Metallic Strucutred Substrates," Catal. Sci. Technol., 4, 2846-2870 (2014). https://doi.org/10.1039/C4CY00179F
  5. Giani, L., Groppi, G., and Tronconi, E., "Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts," Ind. Eng. Chem. Res., 44, 4993-5002 (2005). https://doi.org/10.1021/ie0490886
  6. Montebelli, A., Visconti, C. G., Groppi, G., Tronconi, E., Kohler, S., Venvik, H. J., and Myrstad, R., "Washcoating and Chemical Testing of a Commercial Cu/ZnO/$Al_2O_3$ Catalyst for the Methanol Synthesis over Copper Open-Cell Foams," Appl. Catal., A, 481, 96-103 (2014). https://doi.org/10.1016/j.apcata.2014.05.005
  7. Ciambelli, P., Palma, V., and Palo, E., "Comparison of Ceramic Honeycomb Monolith and Foam as Ni Catalyst Carrier for Methane Autothermal Reforming," Catal. Today, 155, 92-100 (2010). https://doi.org/10.1016/j.cattod.2009.01.021
  8. Katheria, S., Deo, G., and Kunzru, D., "Washcoating of Ni/$MgAl_2O_4$ catalyst on FeCralloy Monoliths for Steam Reforming of Methane," Energy Fuels, 31, 3143-3153 (2017). https://doi.org/10.1021/acs.energyfuels.6b03423
  9. Elete, A., Navarro, P., Costa, L., and Montes, M., "Deposition of Zeolite Coatings onto Fecralloy Microchannels: Washcoating vs. in situ Growing," Microporous Mesoporous Mater., 123, 113-122 (2009). https://doi.org/10.1016/j.micromeso.2009.03.030
  10. Truter, L. A., Makgwane, P. R., Zeelie, B., Roberts, S., Bohringer, W., and Fletcher, J. C. Q., "Washcoating of HZSM-5 Zeolite onto Steel Microreactor Plates - Filling the Void Space between Zeolite Crystallite Agglomerates Particles," Chem. Eng. J., 257, 148-158 (2014). https://doi.org/10.1016/j.cej.2014.07.047
  11. Kryca, J., Iwaniszyn, M., Piatek, M., Jodlowski, P. J., Jedrzejezyk, R., Pedrys, R., Wrobel, A., Lojewska, J., and Kolodziej, A., "Structured Foam Reactor with CuSSZ-13 Catalyst for SCR of $NO_x$ with Ammonia," Top Catal., 59, 887-894 (2016). https://doi.org/10.1007/s11244-016-0564-4
  12. Liu, Y., Xu, J., Li, H., Cai, S., Hu, H., Fang, C., Shi, L., and Zhang, D., "Rational Design and in situ Fabrication of $MnO_2@NiCo_2O_4$ Nanowire Arrays on Ni Foam as High-Performance Monolith de-$NO_x$ Catalysts," J. Mater. Chem. A, 3, 11543-11553 (2015). https://doi.org/10.1039/C5TA01212K
  13. Kang, O, L, Ahmad, A., Rana, U, A., and Hassan, N. H., "Sol-Gel Titanium Dioxide Nanoparticles: Prepartion and Structural Characterization," J. Nanotechno., 2016, 1-7 (2016).
  14. Khodaparast, P., and Ounaies, Z., "Influence of Dispersion States on the Performance of Polymer-Based Nanocomposites," Smart Mater. Struct., 23, 104004-104016 (2014). https://doi.org/10.1088/0964-1726/23/10/104004
  15. Bayer, R., and Knarr, M., "Thermal Precipitation or Gelling Behaviour of Dissolved Methylcellulose (MC) Derivatives-Behaviour in Water and Influence on the Extrusion of Ceramic Pastes. Part 1: Fundamentals of MC-derivatives," J. Eur. Ceram. Soc., 32, 1007-1018 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.025
  16. Oliveira, R. L., Vieira, J. G., Barud, H. S., Assuncao, R. M. N., Filho, G. R., Ribeiro, S. J. L., and Messadeqq, Y., "Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose Under Heterogeneous Condition," J. Braz. Chem. Soc., 26(9), 1861-1870 (2015).
  17. Giani, L., Cristiani, C., Groppi, G., and Tronconi, E., "Wash-Coating Method for $Pd/{\gamma}$-$Al_2O_3$ Deposition on Metallic Foams," Appl. Catal., B, 62, 121-131 (2006). https://doi.org/10.1016/j.apcatb.2005.07.003
  18. Germani, G., Stefanescu, A., Schuurman, Y., and Veen, A. C., "Preparation ad Characterization of Porous Alumina-Based Catalyst Coatings in Microchannels," Chem. Eng. Sci., 62, 5084-5091 (2007). https://doi.org/10.1016/j.ces.2007.02.034
  19. Parlett, C. M. A., Wilson, K., and Lee, A. F., "Hierarchical Porous Materials: Catalytic Applications," Chem. Soc. Rev., 42, 3876-3893 (2013). https://doi.org/10.1039/C2CS35378D
  20. ALOthman, Z. A., "A Review: Fundamental Aspectes of Silicate Mesoporous Materials," Materials, 5, 2874-2902 (2012). https://doi.org/10.3390/ma5122874
  21. Yin, X., Han, H., and Miyamoto, A., "Active Site and Mechanism of the Selective Catalytic Reduction of NO by $NH_3$ over $V_2O_5$: A Periodic First-Principles Study," Phys. Chem. Chem. Phys., 2, 4243-4248 (2000). https://doi.org/10.1039/b003838p
  22. Nicosia, D., Czekaj, I., and Krocher, O., "Chemical Deactivation of $V_2O_5$/$WO_3$-$TiO_2$ SCR Catalysts by Additives and Impurities from Fuels, Lubricataion Oil, and Urea Solution Part II. Characterization Study of the Effect of Alkali and Alkaline Earth Metals," Appl. Catal., B, 77, 228-236 (2008). https://doi.org/10.1016/j.apcatb.2007.07.032