DOI QR코드

DOI QR Code

Spatial Influences of Flood Controls in Dam Operations

댐의 홍수조절에 대한 공간적 영향 분석

  • 정용 (원광대학교 토목환경공학과) ;
  • 김남원 (한국건설기술연구원 수자원.하천연구소)
  • Received : 2018.01.24
  • Accepted : 2018.03.14
  • Published : 2018.06.01

Abstract

This study analyzed the role of dams for the flood control by the observed and simulated hourly flood discharge data. The study area was the Nakdong river basin with Andong and Imha dams. For the analysis 31 flood events from 1997 to 2010 were selected. In the analysis of the flood reduction rate (FRR) of dam itself, the FRR was not decreased with higher size of floods which is not as we expected. In order to see the trend of flood reduction rate depending on the flood size, flood discharge volume presents it better than peak flood discharge. In the comparison of the flood reduction effects of the two dams, Andong dam has 7% larger flood reduction influence at the Sungju gauging station (SGS) located farthest from the selected watershed. Comparing the ratio of the watershed area based on the covered size of the SGS, the FRR of dam is smaller than the area rate. The impact of FRR of dam showed that the FRR fell below 10% when reaching the size of watershed area corresponding to 8.5 times of the size of watershed area of the dam which is larger than Namhan river basin (7 times).

본 연구는 댐의 시간당 홍수유출자료와 강우-유출모형의 모의를 통해 댐의 홍수조절에 대한 역할과 댐 상류 및 하류의 공간적인 영향에 대해 분석하였다. 이를 위한 연구지역으로 안동댐과 임하댐의 영향을 받는 낙동강 상류유역을 선정하였으며 1997년부터 2010년까지의 홍수사상 31개를 분석하였다. 댐의 홍수저감율(Flood Reduction Rate: FRR) 분석은 홍수규모가 커질수록 댐의 방류가 커져 댐의 홍수저감율이 작아질 것으로 예상하였으나 몇몇 사상을 제외하고 예상과 다른 결과를 보였다. 홍수크기와 홍수저감율의 관계성은 유출총량(Volume)이 첨두 유출량(Peak discharge)보다 잘 나타내었다. 선정 유역에서 가장 거리가 있는 성주수위관측소에서의 두 댐 영향은 댐상류 유역면적이 크고 홍수저감율이 큰 안동댐이 평균적으로 7% 크게 영향을 미쳤다. 성주수위관측소가 포함하는 유역을 기준으로 유역면적의 비와 홍수저감율의 비를 비교하면 댐의 홍수저감율은 면적의 비보다 대부분 작게 나타나는 것을 보였다. 댐의 홍수저감율의 영향은 댐이 포함하는 유역면적의 8.5배에 해당하는 유역면적에서 홍수저감율이 10% 이하로 떨어지는 것으로 분석되었으며 이는 남한강유역의 결과(7배)보다 크게 나타난 것이다.

Keywords

References

  1. Andrews (Eds.). (1986). "Downstream effects of flaming gorge reservoir on the green river, colorado and utah." Geological Society of America Bulletin, Vol. 97, pp. 1012-1023. https://doi.org/10.1130/0016-7606(1986)97<1012:DEOFGR>2.0.CO;2
  2. Bennett, S. J. and Simon, A. (Eds.). (2004). "Riparian vegetation and fluvial geomorphology." Water and Science Application, Vol. 8. American Geophysical Union, Washington, DC. p. 282.
  3. Dawdy, D. R. (1991). "Hydrology of glen canyon dam and the grand canyon. in: innational research council (Ed.)." Colorado River Ecology and Dam Management, National Academy Press, Washington, DC, pp. 40-53.
  4. Fisher, S. G., Sponseller, R. A. and Hefferman, J. B. (2004). "Horizons in stream biogeochemistry: flowpaths to progress." Ecology, Vol. 85, pp. 2369-2379. https://doi.org/10.1890/03-0244
  5. Fisher, S. G., Walter, J., Schade, J. and Henry, J. (2001). "Landscape challenges to ecosystem thinking: creative flood and drought in the american southwest." Scientia Marina, Vol. 65 (Suppl. 2), pp. 181-192. https://doi.org/10.3989/scimar.2001.65s2181
  6. Forman, R. T. T. and Godron, M. (1981). "Patches and structural components for a landscape ecology." BioScience, Vol. 31, pp. 733-740. https://doi.org/10.2307/1308780
  7. Forman, R. T. T. and Godron, M. (1986). "Landscape ecology." Wiley, New York. p. 619.
  8. Graf, W. L. (2006). "Downstream hydrologic and geomorphic effects of large dams on American rivers." Geomorphology, Vol. 79, pp. 336-360. https://doi.org/10.1016/j.geomorph.2006.06.022
  9. Gross, E. J. and Moglen, G. E. (2007). "Estimating the hydrological influence of maryland state dams using GIS and the HEC-1 model." Journal of Hydrologic Engineering, Vol. 12, No. 6, pp. 690-693. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(690)
  10. Jung, Y., Kim, N. W. and Lee, J. E. (2015). "Dam effects on spatial extension of flood discharge data and flood reduction scale II." Journal Korea Water Resour. Assoc, Vol. 48, pp. 221-231. https://doi.org/10.3741/JKWRA.2015.48.3.221
  11. Kim, N. W., Jung, Y. and Lee, J. E. (2013). "Spatial extension of runoff data in the applications of a lumped concept model." Journal Korea Water Resour. Assoc, Vol. 46, pp. 921-932. https://doi.org/10.3741/JKWRA.2013.46.9.921
  12. Kimura (1961). "Storage function methods for flood routing." Ph.D. dissertation, Research Institute of Japan Civil Engineering, pp. 89-96, 203-209.
  13. Ministiry of Land, Infrasturture and Transport (MLIT) (2001). "Seomjin river flood forecasting and warning report." Research Report, Seomjin River Flood Control Office (in Korean).
  14. Ministiry of Land, Infrasturture and Transport (MLIT) (2004). "Improvement of flood forecasting and warning systeme for keum river: Yongdam Dam and Miho-chun." Research Report, Korea Institute of Construction Technology (in Korean).
  15. Molles, M. C., Crawford, C. S., Ellis, M., Vallett, H. M. and Dahm, C. N. (1998). "Managed flooding for riparian ecosystem restorationmanaged flooding reorganizes riparian forest ecosystems along the Middle Rio Grande in New Mexico." BioScience, Vol. 48, pp. 749-756. https://doi.org/10.2307/1313337
  16. Romano, S. P., Baer S. G., Zaczek J. J. and Williard K. W. J. (2009). "Site modelling methods for detecting hydrologic alteration of flood frequency and flood duration in the floodplain below the Carlyle dam, Lower Kaskaskia river, Illinois, USA." River Research and Applications, Vol. 25, pp. 975-984. https://doi.org/10.1002/rra.1195
  17. Wohl, E. (2004). "Disconnected rivers: linking rivers to landscapes." Yale University Press, New Haven. p. 301.