DOI QR코드

DOI QR Code

Recent progress on polydopamine surface chemistry

폴리도파민 표면화학: 발명 10 년의 이야기

  • Received : 2018.03.02
  • Accepted : 2018.03.15
  • Published : 2018.03.31

Abstract

Polydopamine coating is one of the most straightforward and widely used method for surface modification inspired by adhesiveness of mussel foot protein contributed by co-existence of catechol and amine. This technique has been utilized not only in surface modification but other numerous fields of study as well. For the past decade, the subject of polydopamine has been thoroughly studied since the initial polydopamine research published in 2007, including its chemical structure, coating conditions, and material characteristics. In this study, we report the current trends and progress of polydopamine coating methods, the newly developing areas of polydopamine related research such as using dopamine derivatives and polyphenolic compounds, improvement of various functionalization and application of polydopamine coating, and explain the state of current attempts to discover the chemical mechanism, structure, and properties of polydopamine.

바다에서 서식하는 홍합의 독특한 수중 접착성을 모방하여 개발된 폴리도파민 (polydopamine) 코팅 기술은 2007년 처음 발표된 이래 지난 10년 동안 전세계적으로 매우 크게 발전하였다. 표면 비특이적인 코팅 능력을 통해 이제까지 표면 개질이 어려웠던 다양한 표면을 제한 없이 기능화 할 수 있는 유일한 표면 화학으로 자리 잡았으며, 또한 다양한 반응 조건에서의 코팅 방법이 새롭게 보고되면서, 산업 전반에 걸친 폴리도파민의 응용 범위가 기하급수적으로 넓어지고 있다. 한편, 밝혀지지 않은 폴리도파민의 복잡한 화학적 구조와 형성 반응 메커니즘에 관한 재료화학적 기초 연구도 지속적으로 보고되고 있으며, 폴리도파민의 전구체인 도파민 (dopamine)과 유사한 분자 구조를 가지는 다양한 카테콜아민 (catecholamine) 화합물과 폴리페놀 (polyphenol)의 표면 코팅 능력이 새로이 밝혀지고 있다. 본 연구에서는, 지난 10년 동안 전세계적으로 급속한 발전을 이룬 폴리도파민의 특성 및 응용 분야에 대해 살펴보고, 이를 통해 폴리도파민의 표면 화학 분야에서의 의의와 가능성에 대해 논의하고자 한다.

Keywords

References

  1. Lee, H, Dellatore, S. M. Miller, W. M. Messersmith, P. B. Science, 318, 426-430, (2007). https://doi.org/10.1126/science.1147241
  2. Waite, J. H. Tanzer, M. L. Science, 212, 1038-1040, (1981). https://doi.org/10.1126/science.212.4498.1038
  3. Waite, J. H, Biochemistry, 40, 2887-2893, (2001). https://doi.org/10.1021/bi002718x
  4. Silverman, H. G, Roberto, F. F. Mar. Biotechnol., 9, 661-681, (2007). https://doi.org/10.1007/s10126-007-9053-x
  5. Holowka, E. P, Deming, T. J. Macromol. Biosci., 10, 496-502, (2010).
  6. Lee, H, Lee, Y, Statz, A., Rho, J, Park, T. G, Messersmith, P. B. Adv. Mater., 20, 1619-1623, (2008). https://doi.org/10.1002/adma.200702378
  7. Kim, E, Song, I. T, Lee, S, Kim, J. S, Lee, H, Jang, J. H. Angew. Chem. Int. Ed., 51, 5598-5601, (2012). https://doi.org/10.1002/anie.201201495
  8. Ryu, J. H, Hong, S, Lee, H. Acta Biomater., 27, 101-115, (2015). https://doi.org/10.1016/j.actbio.2015.08.043
  9. Shin, M, Park, S. G, Oh, B. C, Kim, K., Jo, S, Lee, M. S, Oh, S. S, Hong, S. H, Shin, E. C, Kim, K. S, Kang, S. W, Lee, H. Nat. Mater., 16, 147-152, (2017). https://doi.org/10.1038/nmat4758
  10. Statz, A. R, Meagher, R. J, Barron, A. E, Messersmith, P. B. J. Am. Chem. Soc., 127, 7972-7973, (2005). https://doi.org/10.1021/ja0522534
  11. Maier, G. P, Rapp, M. V, Waite, J. H, Israelachvili, J. N, Butler, A. Science, 349, 628-632, (2015). https://doi.org/10.1126/science.aab0556
  12. Hong, S. H, Hong, S, Ryou, M.H, Choi, J. W, Kang, S. M, Lee, H. Adv. Mater. Interfaces, 3, 1500857, (1-6), (2016).
  13. Liebscher, J, Mrowczynski, R, Scheidt, H. A, Filip, C, Hadade, N. D, Turcu, R, Bende, A, Beck, S. Langmuir, 29, 10539-10548, (2013). https://doi.org/10.1021/la4020288
  14. Liu, Y, Ai, K., Lu, L. Chem. Rev., 114, 5057-5115, (2014). https://doi.org/10.1021/cr400407a
  15. d'Ischia, M, Napolitano, A, Ball, V, Chen, C.-T, Buehler, M. J. Acc. Chem. Res., 47, 3541-3550, (2014). https://doi.org/10.1021/ar500273y
  16. Yang, J, Stuart, M. A. C, Kamperman, M. Chem. Soc. Rev., 43, 8271-8298, (2014). https://doi.org/10.1039/C4CS00185K
  17. Della Vecchia, N. F, Avolio, R, Alfè, M, Errico, M. E, Napolitano, A, d'Ischia, M. Adv. Funct. Mater., 23, 1331-1340, (2013). https://doi.org/10.1002/adfm.201202127
  18. Ding, Y, Weng, L.-T, Yang, M, Yang, Z, Lu, X, Huang, N, Leng, Y. Langmuir, 30, 12258-12269, (2014). https://doi.org/10.1021/la5026608
  19. Yu, X, Fan, H, Wang, L, Jin, Z. Angew. Chem. Int. Ed., 53, 12600-12604, (2014).
  20. Hong, S, Na, Y. S, Choi, S, Song, I. T, Kim, W. Y, Lee, H. Adv. Funct. Mater., 22, 4711-4717, (2012). https://doi.org/10.1002/adfm.201201156
  21. Nuzzo, R. G, Allara, D. L. J. Am. Chem. Soc., 105, 4481-4483, (1983). https://doi.org/10.1021/ja00351a063
  22. Love, J. C, Estroff, L. A, Kriebel, J. K, Nuzzo, R. G, Whitesides, G. M. Chem. Rev., 105, 1103-1169, (2005). https://doi.org/10.1021/cr0300789
  23. Ulman, Chem. Rev., 96, 1533-1554, (1996). https://doi.org/10.1021/cr9502357
  24. Kirkland, J. J. Anal. Chem., 37, 1458-1461, (1965). https://doi.org/10.1021/ac60231a004
  25. Iler, R. K. J. Colloid Interface Sc., 21, 569-594, (1966). https://doi.org/10.1016/0095-8522(66)90018-3
  26. Liston, E. M, Martinu, L, Wertheimer, M. R. J. Adhes. Sci. Technol.,7, 1091-1127, (1993). https://doi.org/10.1163/156856193X00600
  27. Wu, C. C, Wu, C. I, Sturm, J. C, Kahn, A. Appl. Phys. Lett., 70, 1348-1350, (1997). https://doi.org/10.1063/1.118575
  28. Chua, P. K, Chena, J. Y, Wanga, L. P, Huang, N. Mater. Sci. Eng. R., 36, 143-206, (2002). https://doi.org/10.1016/S0927-796X(02)00004-9
  29. Mrowczynski, R, Coy, L. E, Scheibe, B, Czechowski, T, Augustyniak-Jablokow, M, Jurga, S, Tadyszak, K. J. Phys. Chem. B., 119, 10341-10347, (2015). https://doi.org/10.1021/acs.jpcb.5b01524
  30. Kim, B. G, Kim, S, Lee, H, Choi, J. W. Chem. Mater., 26, 4757-4764, (2014). https://doi.org/10.1021/cm501578v
  31. Black, K. C, Yi, J, Rivera, J. G, Zelasko-Leon, D. C, Messersmith, P. B. Nanomedicine, 8, 17-28, (2013). https://doi.org/10.2217/nnm.12.82
  32. Hong, S, Lee, J. S, Ryu, J, Lee, S. H, Lee, D. Y, Kim, D. P, Park, C. B, Lee, H. Nanotechnology, 22, 494020 (1-7), (2011).
  33. Hussain, M. A, Yang, M, Lee, T. J, Kim, J. W, Choi, B. G. J. Colloid Interface Sci., 451, 216-220, (2015). https://doi.org/10.1016/j.jcis.2015.03.062
  34. You, I, Lee, T. G, Nam, Y. S, Lee, H. ACS Nano, 8, 9016-9024, (2014). https://doi.org/10.1021/nn502226v
  35. Yu, J, Kan, Y, Rapp, M, Danner, E, Wei, W, Das, S, Miller, D. R, Chen, Y, Waite, J. H, Israelachvili, J. N. Proc. Natl. Acad. Sci. USA, 110, 15680-15685, (2013). https://doi.org/10.1073/pnas.1315015110
  36. Mian, S. A, Yang, L. M, Saha, L. C, Ahmed, E, Ajmal, M, Ganz, E. Langmuir, 30, 6906-6914, (2014). https://doi.org/10.1021/la500800f
  37. Anderson, T. H, Yu, J, Estrada, A, Hammer, M. U, Waite, J. H, Israelachvili, J. N. Adv. Funct. Mater.,20, 4196-4205, (2014).
  38. Yu, M, Hwang, J, Deming, T. J. J. Am. Chem. Soc., 121, 5825-5826, (1999). https://doi.org/10.1021/ja990469y
  39. Kalyanaraman, B, Premovic, P. I, Sealy, R. C. J. Biol. Chem., 262, 11080-11087, (1987).
  40. Liu, B, Burdine, L, Kodadek, T. J. Am. Chem. Soc., 128, 15228-15235, (2006). https://doi.org/10.1021/ja065794h
  41. Yang, H, Lan, Y, Zhu, W, Li, W, Xu, D, Cui, J, Shen, D, Li, G. J. Mater. Chem., 22, 16994-17001. 2, (2012). https://doi.org/10.1039/c2jm33251e
  42. Ryou, M. H, Lee, Y. M, Park, J. K, Choi, J. W. Adv. Mater., 23, 3066-3070, (2011). https://doi.org/10.1002/adma.201100303
  43. Ma, S, Ye, Q, Pei, X, Wang, D, Zhou, F. Adv. Mater. Interfaces, 2, 1500257 (1-12), (2015). https://doi.org/10.1002/admi.201500257
  44. Sileika, T. S, Kim, H. D, Maniak, P, Messersmith, P. B. ACS Appl. Mater. Interfaces, 3, 4602-4610, (2011). https://doi.org/10.1021/am200978h
  45. Kim, B. H, Lee, D. H, Kim, J. Y, Shin, D. O, Jeong, H. Y, Hong, S, Yun, J. M, Koo, C. M, Lee, H, Kim, S. O. Adv. Mater., 23, 5618-5622, (2011). https://doi.org/10.1002/adma.201103650
  46. Sheng, W, Li, B, Wang, X, Dai, B, Yu, B, Jia, X, Zhou, F. Chem. Sci., 6, 2068-2073, (2015). https://doi.org/10.1039/C4SC03851G
  47. Wei, Q, Zhang, F, Li, J, Li, B, Zhao, C. Polym. Chem.., 1, 1430-1433, (2010). https://doi.org/10.1039/c0py00215a
  48. Son, H. Y, Ryu, J. H, Lee, H, Nam, Y. S. Macromol. Mater. Eng., 298, 547-554, (2013). https://doi.org/10.1002/mame.201200231
  49. Cao, C, Tan, L, Liu, W, Ma, J, Li, L. J. Power Sources, 248, 224-229, (2014). https://doi.org/10.1016/j.jpowsour.2013.09.027
  50. Wei, H, Ren, J, Han, B, Xu, L, Han, L, Jia, L. Colloids Surf. B Biointerfaces, 110, 22-28, (2013). https://doi.org/10.1016/j.colsurfb.2013.04.008
  51. Xi, J, Dai, W, Yu, L. RSC Adv., 5, 33400-33406, (2015). https://doi.org/10.1039/C5RA01486G
  52. Li, L, Zhu, C, Wu, Y, Wang, J, Zhang, T, Liu, Y. RSC Adv., 5, 62905-62912, (2015). https://doi.org/10.1039/C5RA10961B
  53. Pardieu, E, Chau, N. T, Dintzer, T, Romero, T, Favier, D, Roland, T, Edouard, D, Jierry, L, Ritleng, V. Chem. Commun., 52, 4691-4693, (2016). https://doi.org/10.1039/C6CC00847J
  54. Park, J, Brust, T. F, Lee, H. J, Lee, S. C, Watts, V. J, Yeo, Y. ACS Nano, 8, 3347-3356, (2014). https://doi.org/10.1021/nn405809c
  55. Kim, M, Kim, J. S, Lee, H, Jang, J. H. Macromol. Biosci., 16, 738-747, (2016). https://doi.org/10.1002/mabi.201500432
  56. Xie, J, Zhong, S, Ma, B, Shuler, F. D, Lim, C. T. Acta Biomater., 9, 5698-5707, (2013). https://doi.org/10.1016/j.actbio.2012.10.042
  57. Jo, S, Kang, S. M, Park, S. A, Kim, W. D, Kwak, J, Lee, H.. Macromol. Biosci., 13, 1389-1395, (2013). https://doi.org/10.1002/mabi.201300203
  58. Tsai, W. B, Chen, W. T, Chien, H. W, Kuo, W. H, Wang, M. J. Acta Biomater., 7, 4187-4194, (2011). https://doi.org/10.1016/j.actbio.2011.07.024
  59. Xu, Q, Kong, Q, Liu, Z, Zhang, J, Wang, X, Liu, R, Yue, L, Cui, G. RSC Adv., 4, 7845-7850, (2014). https://doi.org/10.1039/c3ra45879b
  60. Ye, C, Wu, Y, Wang, Z. RSC Adv., 6, 9066-9071, (2016). https://doi.org/10.1039/C5RA23232E
  61. Feng, Y, Zheng, Y, Rahman, Z. U, Wang, D, Zhou, F, Liu, W. J. Mater. Chem. A, 4, 18022-18030, (2016). https://doi.org/10.1039/C6TA07288G
  62. Lu, Z, Xiao, J, Wang, Y, Meng, M. J. Colloid Interface Sci., 452, 8-14, (2015). https://doi.org/10.1016/j.jcis.2015.04.015
  63. Guo, L, Liu, Q, Li, G, Shi, J, Liu, J, Wang, T, Jiang, G. Nanoscale, 4, 5864-5867, (2012). https://doi.org/10.1039/c2nr31547e
  64. Hu, H, Yu, B, Ye, Q, Gu, Y, Zhou, F. Carbon, 48, 2347-2353, (2010). https://doi.org/10.1016/j.carbon.2010.03.014
  65. Shi, C, Deng, C, Zhang, X, Yang, P. ACS Appl. Mater. Interfaces, 5, 7770-7776, (2013). https://doi.org/10.1021/am4024143
  66. Zhang, L, Wu, J, Wang, Y, Long, Y, Zhao, N, Xu, J. J. Am. Chem. Soc., 134, 9879-9881, (2012). https://doi.org/10.1021/ja303037j
  67. Wu, Y, Yan, M, Cui, J, Yan, Y, Li, C. Adv. Funct. Mater., 25, 5823-5832, (2015). https://doi.org/10.1002/adfm.201502465
  68. Wu, C, Fan, W, Chang, J, Xiao, Y. J. Mater. Chem., 21, 18300-18307, (2011). https://doi.org/10.1039/c1jm12770e
  69. Lynge, M. E, Ogaki, R, Laursen, A. O, Lovmand, J, Sutherland, D. S, Stadler, B. ACS Appl. Mater. Interfaces, 3, 2142-2147, (2011). https://doi.org/10.1021/am200358p
  70. Lee, M, Rho, J, Lee, D. E, Hong, S, Choi, S. J, Messersmith, P. B, Lee, H. Chempluschem, 77, 987-990, (2012). https://doi.org/10.1002/cplu.201200209
  71. Yang, L, Phua, S. L, Teo, J. K, Toh, C. L, Lau, S. K, Ma, J, Lu, X. ACS Appl. Mater. Interfaces, 3, 3026-3032, (2011). https://doi.org/10.1021/am200532j
  72. Zhou, W. H, Tang, S. F, Yao, Q. H, Chen, F. R, Yang, H. H, Wang, X. R. Biosens. Bioelectron., 26, 585-589, (2010). https://doi.org/10.1016/j.bios.2010.07.024
  73. Jia, X, Ma, Z. Y, Zhang, G. X, Hu, J. M, Liu, Z. Y, Wang, H. Y, Zhou, F. J. Agric. Food Chem., 61, 2919-2924, (2013). https://doi.org/10.1021/jf3053059
  74. Zhang, J, Zhang, W, Bao, T, Chen, Z. Analyst, 139, 242-250, (2014). https://doi.org/10.1039/C3AN01668D
  75. Ryu, J, Ku, S. H, Lee, H, Park, C. B. Adv. Funct. Mater., 20, 2132-2139, (2010). https://doi.org/10.1002/adfm.200902347
  76. Liu, Z, Qu, S, Zheng, X, Xiong, X, Fu, R, Tang, K, Zhong, Z, Weng, J. Mater. Sci. Eng. C., 44, 44-51, (2014). https://doi.org/10.1016/j.msec.2014.07.063
  77. Li, C, Qian, Z.-j, Zhou, C, Su, W, Hong, P, Liu, S, He, L, Chen, Z, Ji, H. RSC Adv., 4, 47848-47852, (2014). https://doi.org/10.1039/C4RA08193E
  78. Mao, W. X, Lin, X. J, Zhang, W, Chi, Z. X, Lyu, R. W, Cao, A. M, Wan, L. J. Chem. Commun., 52, 7122-7125, (2016). https://doi.org/10.1039/C6CC02041K
  79. Wang, D, Ye, Q, Yu, B, Zhou, F. J. Mater. Chem., 20, 6910-6915, (2010). https://doi.org/10.1039/c0jm00743a
  80. Yan, J, Zhou, F. $TiO_2$ Nanotubes: Structure Optimization for Solar Cells. J. Mater. Chem., 21, 9406-9418, (2011). https://doi.org/10.1039/c1jm10274e
  81. Mrowczynski, R, Jurga-Stopa, J, Markiewicz, R, Coy, E. L, Jurga, S, Wozniak, A. RSC Adv., 6, 5936-5943, (2016). https://doi.org/10.1039/C5RA24222C
  82. Xie, A, Zhang, K, Wu, F, Wang, N, Wang, Y, Wang, M. Catal. Sci. Technol., 6, 1764-1771, (2016). https://doi.org/10.1039/C5CY01330E
  83. Ye, Q, Wang, X, Hu, H, Wang, D, Li, S, Zhou, F. J. Phys. Chem. C., 113, 7677-7683, (2009). https://doi.org/10.1021/jp901301t
  84. Kang, K, Choi, I. S, Nam, Y. Biomaterials, 32, 6374-6380, (2011). https://doi.org/10.1016/j.biomaterials.2011.05.028
  85. Kim, R, Nam, Y. J. Neural Eng., 12, 026010 (1-10), (2015). https://doi.org/10.1088/1741-2560/12/2/026010
  86. Wei, N, Jiang, Y, Ying, Y, Guo, X, Wu, Y, Wen, Y, Yang, H. RSC Adv., 7, 11528-11536, (2017). https://doi.org/10.1039/C7RA00267J
  87. Chen, S, Chen, Y, Lei, Y, Yin, Y. Electrochem. Commun., 11, 1675-1679, (2009). https://doi.org/10.1016/j.elecom.2009.06.021
  88. Feng, J.-J, Zhang, P.-P, Wang, A.-J, Liao, Q.-C, Xi, J.-L, Chen, J.-R. New J. Chem., 36, 148-154, (2012). https://doi.org/10.1039/C1NJ20850K
  89. Wei, Y, Kong, J, Yang, L, Ke, L, Tan, H. R, Liu, H, Huang, Y, Sun, X. W, Lu, X, Du, H. J. Mater. Chem. A., 1, 5045-5052, (2013). https://doi.org/10.1039/C3TA10499K
  90. Mondin, G, Wisser, F. M, Leifert, A, Mohamed-Noriega, N, Grothe, J, Dorfler, S, Kaskel, S. J. Colloid Interface Sci., 411, 187-193, (2013). https://doi.org/10.1016/j.jcis.2013.08.028
  91. Li, J, Wen, X. M, Zhang, W, Chen, Y. P, Xiao, Y, Xiong, C. X, Zhu, W, Jiang, T. Adv. Mater. Res., 1082, 65-68, (2014). https://doi.org/10.4028/www.scientific.net/AMR.1082.65
  92. Ye, W, Wang, D, Zhang, H, Zhou, F, Liu, W. Electrochim. Acta., 55, 2004-2009, (2010). https://doi.org/10.1016/j.electacta.2009.11.022
  93. Yan, J, Ye, Q, Zhou, F. RSC Adv., 2, 3978-3985, (2012). https://doi.org/10.1039/c2ra01102f
  94. Park, J. P, Do, M, Jin, H. E, Lee, S. W, Lee, H. ACS Appl. Mater. Interfaces. 6, 18653-18660, (2014). https://doi.org/10.1021/am506873g
  95. Park, J. P, Choi, M. J, Kim, S. H, Lee, S. H, Lee, H. Appl. Environ. Microbiol., 80, 43-53, (2014). https://doi.org/10.1128/AEM.02223-13
  96. Kang, S. M, You, I, Cho, W. K, Shon, H. K, Lee, T. G, Choi, I. S, Karp, J. M, Lee, H. Angew. Chem. Int. Ed., 49, 9401-9404, (2010). https://doi.org/10.1002/anie.201004693
  97. Ponzio, F, Payamyar, P, Schneider, A, Winterhalter, M, Bour, J, Addiego, F, Krafft, M. P, Hemmerle, J, Ball, V. J. Phys. Chem. Lett., 5, 3436-3440, (2014). https://doi.org/10.1021/jz501842r
  98. Hong, S, Schaber, C. F, Dening, K, Appel, E, Gorb, S. N, Lee, H. Adv. Mater., 26, 7581-7587, (2014). https://doi.org/10.1002/adma.201403259
  99. Cui, J, Yan, Y, Such, G. K, Liang, K, Ochs, C. J, Postma, A, Caruso, F. Biomacromolecules, 13, 2225-2228, (2012). https://doi.org/10.1021/bm300835r
  100. Ku, S. H, Ryu, J, Hong, S. K, Lee, H, Park, C. B. Biomaterials, 31, 2535-2541, (2010). https://doi.org/10.1016/j.biomaterials.2009.12.020
  101. Luo, R, Tang, L, Zhong, S, Yang, Z, Wang, J, Weng, Y, Tu, Q, Jiang, C, Huang, N. ACS Appl. Mater. Interfaces, 5, 1704-1714, (2013). https://doi.org/10.1021/am3027635
  102. Yang, K, Lee, J. S, Kim, J, Lee, Y. B, Shin, H, Um, S. H, Kim, J. B, Park, K. I, Lee, H, Cho, S. W. Biomaterials, 33, 6952-6964, (2012). https://doi.org/10.1016/j.biomaterials.2012.06.067
  103. Kandasamy, K, Narayanan, K, Ni, M, Du, C, Wan, A. C, Zink, D. Biomacromolecules, 15, 2067-2078, (2014). https://doi.org/10.1021/bm5001907
  104. Ku, S. H, Lee, J. S, Park, C. B. Langmuir, 26, 15104-15108, (2010). https://doi.org/10.1021/la102825p
  105. Sun, K, Xie, Y, Ye, D, Zhao, Y, Cui, Y, Long, F, Zhang, W, Jiang, X. Langmuir, 28, 2131-2136, (2012). https://doi.org/10.1021/la2041967
  106. Lee, H. Y, Jeong, H, Jung, I. Y, Jang, B, Seo, Y. C, Lee, H, Lee, H. Adv. Mater., 27, 3513-3517, (2015). https://doi.org/10.1002/adma.201500414
  107. You, I, Kang, S. M, Lee, S, Cho, Y. O, Kim, J. B, Lee, S. B, Nam, Y. S, Lee, H. Angew. Chem. Int. Ed., 51, 6126-6130, (2012). https://doi.org/10.1002/anie.201200329
  108. Chien, C. Y, Tsai, W. B. ACS Appl. Mater. Interfaces, 5, 6975-6983, (2013). https://doi.org/10.1021/am401071f
  109. Kang, S. M, Hwang, N. S, Yeom, J, Park, S. Y, Messersmith, P. B, Choi, I. S, Langer, R, Anderson, D. G, Lee, H. Adv. Funct. Mater., 22, 2949-2955, (2012). https://doi.org/10.1002/adfm.201200177
  110. Li, Y, Yang, W, Li, X, Zhang, X, Wang, C, Meng, X, Pei, Y, Fan, X, Lan, P, Wang, C, Li, X, Guo, Z. ACS Appl. Mater. Interfaces, 7, 5715-5724, (2015). https://doi.org/10.1021/acsami.5b00331
  111. Zhang, X, Wang, S, Xu, L, Feng, L, Ji, Y, Tao, L, Li, S, Wei, Y. Nanoscale, 4, 5581-5584, (2012). https://doi.org/10.1039/c2nr31281f
  112. Nurunnabi, M, Khatun, Z, Nafiujjaman, M, Lee, D. G, Lee, Y. K. ACS Appl. Mater. Interfaces, 5, 8246-8253, (2013). https://doi.org/10.1021/am4023863
  113. Lin, L.-S, Cong, Z.-X, Cao, J.-B, Ke, K.-M, Peng, Q.-L, Gao, J, Yang, H.-H, Liu, G, Chen, X. ACS Nano, 8, 3876-3883, (2014). https://doi.org/10.1021/nn500722y
  114. Tao, W, Zeng, X, Wu, J, Zhu, X, Yu, X, Zhang, X, Zhang, J, Liu, G, Mei, L. Theranostics, 6, 470-484, (2016). https://doi.org/10.7150/thno.14184
  115. Liu, Y, Ai, K, Liu, J, Deng, M, He, Y, Lu, L. Adv. Mater., 25, 1353-1359, (2013). https://doi.org/10.1002/adma.201204683
  116. Yang, S. H, Hong, D, Lee, J, Ko, E. H, Choi, I. S. Small, 9, 178-186, (2013). https://doi.org/10.1002/smll.201202174
  117. Yang, S. H, Kang, S. M, Lee, K. B, Chung, T. D, Lee, H, Choi, I. S. J. Am. Chem. Soc., 133, 2795-2797, (2011). https://doi.org/10.1021/ja1100189
  118. Zhang, C, Yang, H. C, Wan, L. S, Liang, H. Q, Li, H, Xu, Z. K. ACS Appl. Mater. Interfaces, 7, 11567-11574, (2015). https://doi.org/10.1021/acsami.5b02530
  119. Lee, M, Kim, J. U, Lee, J. S, Lee, B. I, Shin, J, Park, C. B. Adv. Mater., 26, 4463-4468, (2014). https://doi.org/10.1002/adma.201305766
  120. Kang, S. M, Ryou, M.-H, Choi, J. W, Lee, H. Chem. Mater., 24, 3481-3485, (2012). https://doi.org/10.1021/cm301967f
  121. Kim, D. S, Park, Y. J. Electrochim. Acta, 132, 297-306, (2014). https://doi.org/10.1016/j.electacta.2014.03.175
  122. Yoon, T. H, Park, Y. J. J. Power Sources, 244, 344-353, (2013). https://doi.org/10.1016/j.jpowsour.2013.01.023
  123. Zhou, W, Xiao, X, Cai, M, Yang, L. Nano Lett., 14, 5250-5256, (2014). https://doi.org/10.1021/nl502238b
  124. Li, B, Chen, Y, Ge, X, Chai, J, Zhang, X, Hor, T. S, Du, G, Liu, Z, Zhang, H, Zong, Y. Nanoscale, 8, 5067-5075, (2016). https://doi.org/10.1039/C5NR06538K
  125. Cao, Y, Zhang, X, Tao, L, Li, K, Xue, Z, Feng, L, Wei, Y. ACS Appl. Mater. Interfaces, 5, 4438-4442, (2013). https://doi.org/10.1021/am4008598
  126. Zhu, Q, Pan, Q. ACS Nano, 8, 1402-1409, (2014). https://doi.org/10.1021/nn4052277
  127. Yang, H.-C, Liao, K.-J, Huang, H, Wu, Q.-Y, Wan, L.-S, Xu, Z.-K. J. Mater. Chem. A.,2, 10225-10230, (2014). https://doi.org/10.1039/C4TA00143E
  128. Ma, Z. Y, Jia, X, Zhang, G. X, Hu, J. M, Zhang, X. L, Liu, Z. Y, Wang, H. Y, Zhou, F. J. Agric. Food Chem., 61, 5474-5482, (2013). https://doi.org/10.1021/jf401102a
  129. Zhu, B, Edmondson, S. Polymer, 52, 2141-2149, (2011). https://doi.org/10.1016/j.polymer.2011.03.027
  130. Wu, H, Kong, J, Yao, X, Zhao, C, Dong, Y, Lu, X. Chem. Eng. J., 270, 101-109, (2015). https://doi.org/10.1016/j.cej.2015.02.019
  131. Liu, R, Mahurin, S. M, Li, C, Unocic, R. R, Idrobo, J. C, Gao, H, Pennycook, S. J, Dai, S. Angew. Chem. Int. Ed., 50, 6799-6802, (2011). https://doi.org/10.1002/anie.201102070
  132. Kong, J, Yee, W. A, Yang, L, Wei, Y, Phua, S. L, Ong, H. G, Ang, J. M, Li, X, Lu, X. Chem. Commun., 48, 10316-10318, (2012). https://doi.org/10.1039/c2cc35284b
  133. Zhou, D, Yang, L, Yu, L, Kong, J, Yao, X, Liu, W, Xu, Z, Lu, X. Nanoscale, 7, 1501-1509, (2015). https://doi.org/10.1039/C4NR06366J
  134. Mrowczynski, R, Bunge, A, Liebscher, J. Chem. Eur. J., 20, 8647-8653, (2014). https://doi.org/10.1002/chem.201402532
  135. Liu, X, Cao, J, Li, H, Li, J, Jin, Q, Ren, K, Ji, J. ACS Nano, 7, 9384-9395, (2013). https://doi.org/10.1021/nn404117j
  136. Fei, B, Qian, B, Yang, Z, Wang, R, Liu, W. C, Mak, C. L, Xin, J. H. Carbon, 46, 1795-1797, (2008). https://doi.org/10.1016/j.carbon.2008.06.049
  137. Han, G, Zhang, S, Li, X, Widjojo, N, Chung, T.-S. Chem. Eng. Sci., 80, 219-231, (2012). https://doi.org/10.1016/j.ces.2012.05.033
  138. Ball, V, Del Frari, D, Toniazzo, V, Ruch, D. J. Colloid Interface Sci., 386, 366-372, (2012). https://doi.org/10.1016/j.jcis.2012.07.030
  139. Bernsmann, F, Ball, V, Addiego, F, Ponche, A, Michel, M, Gracio, J. J, Toniazzo, V, Ruch, D. Langmuir, 27, 2819-2825, (2011). https://doi.org/10.1021/la104981s
  140. Ball, V. Colloids Surf. A Physicochem. Eng. Asp., 363, 92-97, (2010). https://doi.org/10.1016/j.colsurfa.2010.04.020
  141. Della Vecchia, N. F, Luchini, A, Napolitano, A, D'Errico, G, Vitiello, G, Szekely, N, d'Ischia, M, Paduano, L. Langmuir, 30, 9811-9818, (2014). https://doi.org/10.1021/la501560z
  142. Lee, M, Lee, S. H, Oh, I. K, Lee, H. Small, 13, 1600443 (1-6), (2017).
  143. Ponzio, F, Barthes, J, Bour, J, Michel, M, Bertani, P, Hemmerle, J, d'Ischia, M, Ball, V. Chem. Mater., 28, 4697-4705, (2016). https://doi.org/10.1021/acs.chemmater.6b01587
  144. Du, X, Li, L, Li, J, Yang, C, Frenkel, N, Welle, A, Heissler, S, Nefedov, A, Grunze, M, Levkin, P. A. Adv. Mater.,26, 8029-8033, (2014). https://doi.org/10.1002/adma.201403709
  145. Du, X, Li, L, Behboodi-Sadabad, F, Welle, A, Li, J, Heissler, S, Zhang, H, Plumere, N, Levkin, P. A. Polymer Chemistry, 8, 2145-2151, (2017). https://doi.org/10.1039/C7PY00051K
  146. Shafiq, Z, Cui, J, Pastor-Perez, L, San Miguel, V, Gropeanu, R. A, Serrano, C, del Campo, A. Angew. Chem. Int. Ed., 124, 4408-4411, (2012). https://doi.org/10.1002/ange.201108629
  147. Nijhuis, A. W, van den Beucken, J. J, Boerman, O. C, Jansen, J. A, Leeuwenburgh, S. C. Tissue Eng. Part C Methods, 19, 610-619, (2013). https://doi.org/10.1089/ten.tec.2012.0313
  148. Dreyer, D. R, Miller, D. J, Freeman, B. D, Paul, D. R, Bielawski, C. W. Langmuir, 28, 6428-6435, (2012). https://doi.org/10.1021/la204831b
  149. Ma, H, Gao, P, Zhang, Y. Fan, D, Li, G, Du, B, Wei, Q. RCS Adv., 3, 25291-25295, (2013).