DOI QR코드

DOI QR Code

Fast, Upward, Long-Lasting, Transit Echoes as an Evidence of New-Type of Meteor-Trail Leader Discharge in the Summer Polar Upper Mesosphere

  • 투고 : 2018.05.04
  • 심사 : 2018.06.01
  • 발행 : 2018.06.15

초록

Non-specular, vertically upward transit, fast-moving radar echoes are observed in the summer polar upper mesosphere near 90 km using 52 MHz VHF radar at Esrange, Sweden. By resolving maximum echo power movement, the unusual meteor trails propagate vertically upward with taking horizontal displacements at an initial speed of 10 km/s exponentially decreasing with increasing height from 85-89 km, lasting for 3.5 sec. Another upward transit is observed as following a downward transit echo target in about ~1 sec, lasting over 5 sec. The upward motion cannot be explained with the dynamics of penetrating meteors or by atmospheric dynamics. The observation proposes that secondary produced plasma jets occurring from meteor trail are possibly responsible for upward fast moving echoes. The long-lasting (3-5 sec), ascending meteor trails at speeds of a few $10^4m/s$ are distinctive from any previous occurrences of meteors or upper atmospheric electrical discharges in the aspect of long-lasting upward/downward motions. This result possibly suggests a new type of meteor-trail leader discharge occurring in the summer polar upper mesosphere and lower thermosphere.

키워드

참고문헌

  1. Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ, Non-Equilibrium Air Plasmas at Atmospheric Pressures (CRC Press, Boca Raton, 2004).
  2. Ceplecha Z, Borovicka J, Elford WG, ReVelle DO, Hawkes RL, et al., Meteor phenomena and bodies, Space Sci. Rev. 84, 327-341 (1998). https://doi.org/10.1023/A:1005069928850
  3. Chau JL, Woodman RF, Observations of meteor head-echoes using the Jicamarca 50 MHz radar in interferometer mode, Atmos. Chem. Phys. 4, 511-521 (2004). https://doi.org/10.5194/acp-4-511-2004
  4. Chau JL, Strelnikova I, Schult C, Oppenheim MM, Kelley MC, et al., Nonspecular meteor trails from non-field-aligned irregularities: can they be explained by presence of charged meteor dust?, Geophys. Res. Lett. 41, 3336-3343 (2014). https://doi.org/10.1002/2014GL059922
  5. Cho JYN, Rottger J, An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res. 102, 2001-2020 (1997). https://doi.org/10.1029/96JD02030
  6. Dyrud LP, Oppenheim MM, Close S, Hunt S, Interpretation of non-specular radar meteor trails, Geophys. Res. Lett. 29, 8-1-8-4 (2002). https://doi.org/10.1029/2002GL015953
  7. Holdsworth DA, Reid IM, A simple model of atmospheric radar backscatter: description and application to the full correlation analysis of spaced antenna data, Radio Sci. 30, 1263-1280 (1995). https://doi.org/10.1029/95RS00645
  8. Holdsworth DA, Reid IM, Comparisons of full correlation analysis (FCA) and imaging Doppler interferometry (IDI) winds using the Buckland Park MF radar, Ann. Geophys. 22, 3829-3842 (2004). https://doi.org/10.5194/angeo-22-3829-2004
  9. Holzworth RH, Goldberg RA, Electric field measurements in noctilucent clouds, J. Geophys. Res. 109, D16203 (2004). https://doi.org/10.1029/2003JD004468
  10. Hunt SM, Oppenheim M, Close S, Brown PG, McKeen F, et al., Determination of the meteoroid velocity distribution at the earth using high-gain radar, Icarus 168, 34-42 (2004). https://doi.org/10.1016/j.icarus.2003.08.006
  11. Jee G, Kim JH, Lee C, Kim YH, Ground-based observations for the upper atmosphere at King Sejong Station, Antarctica, J. Astron. Space Sci. 31, 169-176 (2014). https://doi.org/10.5140/JASS.2014.31.2.169
  12. Kim JH, Chung JK, Kim YH, Won YI, Chun MY, et al., All-Sky observation of the 2001 Leonid meteor storm: 1. meteor magnitude distribution, J. Astron. Space Sci. 20, 283-298 (2003). https://doi.org/10.5140/JASS.2003.20.4.283
  13. Kirkwood S, Wolf I, Nilsson H, Dalin P, Mikhaylova D, et al., Polar mesosphere summer echoes at Wasa, Antarctica ($73^{\circ}S$): first observations and comparison with $68^{\circ}N$, Geophys. Res. Lett. 34, L15803 (2007). https://doi.org/10.1029/2007GL030516
  14. Lahtinen P, Makela A, Pekkola M, Harri AM, TLE observing in Finland, in 1st TEA-IS summer school, Malaga, Spain, 17-22 Jun 2012.
  15. Lee YS, Shepherd GG, Summer high-latitude mesospheric observations of supersonic bursts and O($^1S$) emission rate with the UARS WINDII instrument and the association with sprites, meteors, and lightning, J. Geophys. Res. 115, A00E26 (2010). https://doi.org/10.1029/2009JA014731
  16. Lee YS, Kirkwood S, Kwak YS, Kim KC, Shepherd GG, Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: coupling between the solar wind and the mesosphere, J. Geophys. Res. 119, 3883-3894 (2014). https://doi.org/10.1002/2014JA019790
  17. McKinley DWR, Meteor Science and Engineering (McGraw-Hill, New York, 1961).
  18. Muller RA, Red sprites triggered by meteors?, Eos Trans. AGU, 76(46), Fall Meet. Suppl., F105 (1995).
  19. Oppenheim MM, Dyrud LP, Ray L, Plasma instabilities in meteor trails: linear theory, J. Geophys. Res. 108, 1063 (2003). https://doi.org/10.1029/2002JA009548
  20. Park FR, McIntosh BA, A bright fireball observed photographically by radar and visually, J. R. Astron. Soc. Can. 61, 25-39 (1967).
  21. Pasko VP, Inan US, Bell TF, Spatial structure of sprites, Geophys. Res. Lett. 25, 2123-2126 (1998). https://doi.org/10.1029/98GL01242
  22. Roussel-Dupre R, Gurevich AV, On runaway breakdown and upward propagating discharges. J. Geophys. Res. 101, 2297-2311 (1996). https://doi.org/10.1029/95JA03278
  23. Sato T, Nakamura T, Nishimura K, Orbit determination of meteors using the MU radar, IEICE Trans. Commun. E83-B, 1990-1995 (2000).
  24. Shimogawa M, Holzworth RH, Electric field measurements in a NLC/PMSE region during the MASS/ECOMA campaign, Ann. Geophys. 27, 1423-1430 (2009). https://doi.org/10.5194/angeo-27-1423-2009
  25. Sparks JJ, Janches D, Nicolls MJ, Heinselman C, Determination of physical and radiant meteor properties using PFISR interferometry measurements of head echoes, J. Atmos. Sol.-Terr. Phys. 72, 1221-1230 (2010). https://doi.org/10.1016/j.jastp.2010.08.004
  26. Spurny P, Ceplecha Z, Is electric charge separation the main process for kinetic energy transformation into the meteor phenomenon?, Astron. Astrophys. 489, 449-454 (2008). https://doi.org/10.1051/0004-6361:200810069
  27. Suszcynsky DM, Strabley R, Roussel-Dupre R, Symbalisty EMD, Armstrong RA, et al., Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event, J. Geophys. Res. 104, 31361-31367 (1999). https://doi.org/10.1029/1999JD900962
  28. Symbalisty EMD, Roussel-Dupre R, ReVelle DO, Suszcynsky DM, Yukhimuk VA, et al., Meteor trails and columniform sprites, Icarus 148, 65-79 (2000). https://doi.org/10.1006/icar.2000.6517
  29. Uman MA, The Lightning Discharge (Dover Publications, Mineola, 2001).
  30. Wescott EM, Sentman DD, Heavner MJ, Hampton DL, Vaughan Jr. OH, Blue Jets: their relationship to lightning and very large hailfall, and their physical mechanisms for their production, J. Atmos. Sol.-Terr. Phys. 60, 713-724 (1998). https://doi.org/10.1016/S1364-6826(98)00018-2
  31. Yair Y, Israelevich P, Devir AD, Moalem M, Price C, et al., New observations of sprites from the space shuttle, J. Geophys. Res. 109, D15201 (2004). https://doi.org/10.1029/2003JD004497
  32. Younger PT, Astin I, Sandford DJ, Mitchell NJ, The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes, Ann. Geophys. 27, 2831-2841 (2009). https://doi.org/10.5194/angeo-27-2831-2009
  33. Zabotin NA, Wright JW, Role of meteoric dust in sprite formation, Geophys. Res. Lett. 28, 2593-2596 (2001). https://doi.org/10.1029/2000GL012699