DOI QR코드

DOI QR Code

Unusual Radar Echo from the Wake of Meteor Fireball in Nearly Horizontal Transits in the Summer Polar Lower-Thermosphere

  • Received : 2018.05.03
  • Accepted : 2018.06.01
  • Published : 2018.06.15

Abstract

The summer polar lower thermosphere (90-100 km) has an interesting connection to meteors, adjacent to the mesopause region attaining the lowest temperature in summer. Meteors supply condensation nuclei for charged ice particles causing polar mesospheric summer echoes (PMSE). We report the observation of meteor trail with nearly horizontal transit at high speed (20-50 km/s), and at last with re-enhanced echo power followed by diffusive echoes. Changes in phase difference between radar receivers aligned in meridional and zonal directions are used to determine variations in horizontal displacements and speeds with respect to time by taking advantage of radar interferometric analysis. The actual transit of echo target is observed along the straight pathway vertically and horizontally extended as much as a distance of at least 24 km and at most 29 km. The meteor trail initially has a signature similar to 'head echoes', with travel speeds from 20 - 50 km/s. It subsequently transforms into a different type of echo target including specular echo and then finally the power reenhanced. The reenhancement of echo power is followed by fume-like diffusive echoes, indicating sudden release of plasma as like explosive process probably involved. We discuss a possible role of meteor-triggered secondary plasma trail, such as fireball embedded with electrical discharge that continuously varies the power and transit speed.

Keywords

References

  1. Abe S, Meteoroids and meteors - observations and connection to parent bodies, vol. 758, Lecture Notes in Physics, eds. Mann I, Nakamura A, Mukai T (Springer, Berlin, 2009), 129-166.
  2. Briggs BH, Phillips GJ, Shinn DH, The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. 63, 106-121 (1950). https://doi.org/10.1088/0370-1301/63/2/305
  3. Ceplecha Z, Borovicka J, Elford WG, ReVelle DO, Hawkes RL, et al., Meteor phenomena and bodies, Space Sci. Rev. 84, 327-471 (1998). https://doi.org/10.1023/A:10050699
  4. Chapin E, Kudeki E, Plasma wave excitation on meteor trails in the equatorical eletrojet, Geophys. Res. Lett. 21, 2433-2436 (1994). https://doi.org/10.1029/94GL01705
  5. Chau JL, Strelnikova I, Schult C, Oppenheim MM, Kelley MC, et al., Nonspecular meteor trails from non-field-aligned irregularities: can they be explained by presence of charged meteor dust?, Geophys. Res. Lett. 41, 3336-3343 (2014). https://doi.org/10.1002/2014GL059922
  6. Cho JYN, Rottger J, An updated review of polar mesosphere summer echoes: observation, theory, and their relation-ship to noctilucent clouds and subvisible aerosols, J. Geophys. Res. 102, 2001-2020 (1997). https://doi.org/10.1029/96JD02030
  7. Close S, Oppenheim M, Hunt S, Dyrud L, Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies, J. Geophys. Res. 107, A10 (2002). https://doi.org/10.1029/2002JA009253
  8. Dimant YS, Oppenheim MM, Milikh GM, Meteor plasma trails: effects of external electric field, Ann. Geophys. 27, 279-296 (2009). https://doi.org/10.5194/angeo-27-279-2009
  9. Dyrud LP, Oppenheim MM, Close S, Hunt S, Interpretation of non-specular radar meteor trails, Geophys. Res. Lett. 29, 8-1-8-4 (2002). https://doi.org/10.1029/2002GL015953
  10. Hocking HK, Real-time meteor entrance speed determinations made with interferometric meteor radars, Radio Sci. 35, 1205-1220 (2000). https://doi.org/10.1029/1999RS002283
  11. Holzworth RH, Goldberg RA, Electric field measurements in noctilucent clouds, J. Geophys. Res. 109, D16203 (2004). https://doi.org/10.1029/2003JD004468
  12. Janches D, Hormaechea JL, Brunini C, Hocking W, Fritts DC, An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina Agile Meteor Radar (SAAMER), Icarus 223, 677-683 (2013). https://doi.org/10.1016/j.icarus.2012.12.018
  13. Janches D, Hocking W, Pifko S, Hormaechea JL, Fritts DC, et al., Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar, J. Geophys. Res. 119, 2269-2287 (2014). https://doi.org/10.1002/2013JA019241
  14. Jee G, Kim JH, Lee C, Kim YH, Ground-based observations for the upper atmosphere at King Sejong Station, Antarctica, J. Astron. Space Sci. 31, 169-176 (2014). https://doi.org/10.5140/JASS.2014.31.2.169
  15. Johnson RM, Killeen TL, The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (American Geophysical Union, Washington D.C., 1995).
  16. Kero J, Szasz C, Nakamura T, MU head echo observations of the 2010 Geminids: radiant, orbit, and meteor flux observing biases, Ann. Geophys. 31, 439-449 (2013). https://doi.org/10.5194/angeo-31-439-2013
  17. Kirkwood S, Wolf I, Nilsson H, Dalin P, Mikhaylova D, et al., Polar mesosphere summer schoes at Wasa, Antarctica ($73^{\circ}S$): first observations and comparison with $68^{\circ}N$, Geophys. Res. Lett. 34, L15803 (2007). https://doi.org/10.1029/2007GL030516
  18. Kwak YS, Yang TY, Kil H, Phanikumar DV, Heo BH, et al., Characteristics of the E - and F -region field-aligned irregularities in middle latitudes: Initial results obtained from the Daejeon 40.8 MHz VHF radar in South Korea, J. Astron. Space Sci. 31, 15-23 (2014). https://doi.org/10.5140/JASS.2014.31.1.15
  19. Lee YS, Shepherd GG, Summer high-latitude mesospheric observations of supersonic bursts and $O(^1S)$ emission rate with the UARS WINDII instrument and the association with sprites, meteors, and lightning, J. Geophys. Res. 115, A00E26 (2010). https://doi.org/10.1029/2009JA014731
  20. Lee YS, Kirkwood S, Kwak YS, Kim KC, Shepherd GG, Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: coupling between the solar wind and the mesosphere, J. Geophys. Res. 119, 3883-3894 (2014). https://doi.org/10.1002/2014JA019790
  21. Malhotra A, Mathews JD, Low-altitude meteor trail echoes, Geophys. Res. Lett. 36, L21106 (2009). https://doi.org/10.1029/2009GL040558
  22. Malhotra A, Mathews JD, Urbina J, A radio science perspective on long-duration meteor trails, J. Geophys. Res. 112, A12303 (2007). https://doi.org/10.1029/2007JA012576
  23. Oppenheim MM, Dyrud LP, Ray L, Plasma instabilities in meteor trails: linear theory, J. Geophys. Res. 108, 1063 (2003). https://doi.org/10.1029/2002JA009548
  24. Oppenheim MM, Sugar G, Slowey NO, Bass E, Chau JL, et al., Remote sensing lower thermosphere wind profiles using non-specular meteor echoes, Geophys. Res. Lett. 36, L09817 (2009). https://doi.org/10.1029/2009GL037353
  25. Park FR, McIntosh BA, A bright fireball observed photographically, by radar and visually, J. R. Astron. Soc. Can. 61, 25-39 (1967).
  26. Reddi CR, Sama TVC, Rao PB, Spatial domain interferometric VHF radar observations of spread meteor echoes, J. Atmos. Sol.-Terr. Phys. 64, 339-347 (2002). https://doi.org/10.1016/S1364-6826(01)00107-9
  27. Sandford DJ, Beldon CL, Hibbins RE, Mitchell NJ, Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere - Part 1: mean winds, Atmos. Chem. Phys. 10, 10273-10289 (2010). https://doi.org/10.5194/acp-10-10273-2010
  28. Shimogawa M, Holzworth RH, Electric field measurements in a NLC/PMSE region during the MASS/ECOMA campaign, Ann. Geophys. 27, 1423-1430 (2009). https://doi.org/10.5194/angeo-27-1423-2009
  29. Skolnik MI, Introduction to radar systems (McGraw-Hill, New York, 1962).
  30. Sparks JJ, Janches D, Nicolls MJ, Heinselman C, Determination of physical and radiant meteor properties using PFISR interferometry measurements of head echoes J. Atmos. Sol.-Terr. Phys. 72, 1221-1230 (2010). https://doi.org/10.1016/j.jastp.2010.08.004
  31. Spurny P, Ceplecha Z, Is electric charge separation the main process for kinetic energy transformation into the meteor phenomenon?, Astron. Astrophys. 489, 449-454 (2008). https://doi.org/10.1051/0004-6361:200810069
  32. Sugar G, Oppenheim MM, Bass E, Chau JL, Nonspecular meteor trail altitude distributions and durations observed by a 50 Mhz high-power radar, J. Geophys. Res. 115, A12334 (2010). https://doi.org/10.1029/2010JA015705
  33. Yang TY, Kwak YS, Kil H, Lee YS, Lee WK, et al., Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea, J. Geophys. Res. 120, 10107-10115 (2015). https://doi.org/10.1002/2015JA021885
  34. Younger PT, Astin I, Sandford DJ, Mitchell NJ, The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes, Ann. Geophys. 27, 2831-2841 (2009). https://doi.org/10.5194/angeo-27-2831-2009
  35. Zadorozhny AM, Tyutin AA, Witt G, Wilhelm N, Walchli U, et al., Electric field measurements in the vicinity of noctilucent clouds and PMSE, Geophy. Res. Lett. 20, 2299-2302 (1993). https://doi.org/10.1029/93GL02626
  36. Zhou QH, Mathews JD, Nakamura T, Implications of meteor observations bu the MU radar, Geophys. Res. Lett. 28, 1399-1402 (2001). https://doi.org/10.1029/2000GL012504