DOI QR코드

DOI QR Code

Latitudinal Distribution of Sunspot and North-South Asymmetry Revisited

  • Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2018.05.02
  • Accepted : 2018.05.21
  • Published : 2018.06.15

Abstract

The solar magnetic field plays a central role in the field of solar research, both theoretically and practically. Sunspots are an important observational constraint since they are considered a discernable tracer of emerged magnetic flux tubes, providing the longest running records of solar magnetic activity. In this presentation, we first review the statistical properties of the latitudinal distribution of sunspots and discuss their implications. The phase difference between paired wings of the butterfly diagram has been revealed. Sunspots seem to emerge with the exponential distribution on top of slowly varying trends by periods of ~11 years, which is considered multiplicative rather than additive. We also present a concept for the center-of-latitude (COL) and its use. With this, one may sort out a traditional butterfly diagram and find new features. It is found that the centroid of the COL does not migrate monotonically toward the equator, appearing to form an 'active latitude'. Furthermore, distributions of the COL as a function of latitude depend on solar activity and the solar North-South asymmetry. We believe that these findings serve as crucial diagnostic tools for any potential model of the solar dynamo. Finally, we find that as the Sun modulates the amount of observed galactic cosmic ray influx, the solar North-South asymmetry seems to contribute to the relationship between the solar variability and terrestrial climate change.

Keywords

References

  1. Antonucci E, Hoeksema JT, Scherrer PH, Rotation of the photospheric magnetic fields: a north-south asymmetry, Astrophys. J. 360, 296-304 (1990). https://doi.org/10.1086/169120
  2. Atac T, Ozguc A, North-south asymmetry in the solar flare index, Sol. Phys. 166, 201-208 (1996). https://doi.org/10.1007/BF00179363
  3. Atac T, Ozguc A, Flare index during the rising phase of solar cycle 23, Sol. Phys. 198, 399-407 (2001). https://doi.org/10.1023/A:1005218315298
  4. Babcock HW, The topology of the Sun's magnetic field and the 22-year cycle, Astrophys. J. 133, 572-587 (1961). https://doi.org/10.1086/147060
  5. Bai T, Sturrock PA, The 154-day and related periodicities of solar activity as subharmonics of a fundamental period, Nature 350, 141-143 (1991). https://doi.org/10.1038/350141a0
  6. Bai T, Sturrock PA, Evidence for a fundamental period of the Sun and its relation to the 154 day complex of periodicities, Astrophys. J. 409, 476-486 (1993). https://doi.org/10.1086/172680
  7. Ballester JL, Oliver R, Carbonell M, The periodic behavior of the north-south asymmetry of sunspot areas revisited, Astron. Astrophys. 431, L5-L8 (2005). https://doi.org/10.1051/0004-6361:200400135
  8. Berdyugina SV, Usoskin IG, Active longitudes in sunspot activity: century scale persistence, Astron. Astrophys. 405, 1121-1128 (2003). https://doi.org/10.1051/0004-6361:20030748
  9. Brajsa R, WhOl H, Vrsnak B, Ruzdjak D, Sudar D, et al., Differential rotation of stable recurrent sunspot groups, Sol. Phys. 206, 229-241 (2002). https://doi.org/10.1023/A:1015064522255
  10. Carbonell M, Oliver R, Ballester JL, On the asymmetry of solar activity, Astron. Astrophys. 274, 497-504 (1993).
  11. Carrington RC, On Dr. Soemmering's observations of the solar spots in the years 1826, 1827, 1828, and 1829, Mon. Not. R. Astron. Soc. 20, 71-77 (1860). https://doi.org/10.1093/mnras/20.3.71
  12. Carslaw KS, Harrison RG, Kirkby J, Cosmic rays, clouds, and climate, Science 298, 1732-1737 (2002). https://doi.org/10.1126/science.1076964
  13. Chang HY, Variation in north-south asymmetry of sun spot area, J. Astron. Space Sci. 24, 91-98 (2007a). https://doi.org/10.5140/JASS.2007.24.2.091
  14. Chang HY, A new method for north-south asymmetry of sun spot area, J. Astron. Space Sci. 24, 261-268 (2007b). https://doi.org/10.5140/JASS.2007.24.4.261
  15. Chang HY, Stochastic properties in north-south asymmetry of sunspot area, New Astron. 13, 195-201 (2008). https://doi.org/10.1016/j.newast.2007.08.007
  16. Chang HY, On mode correlation of solar acoustic oscillations, J. Astron. Space Sci. 26, 287-294 (2009a). https://doi.org/10.5140/JASS.2009.26.3.287
  17. Chang HY, Periodicity of north-south asymmetry of sunspot area revisited: Cepstrum analysis, New Astron. 14, 133-138 (2009b). https://doi.org/10.1016/j.newast.2008.07.001
  18. Chang HY, Correlation of parameters characterizing the latitudinal distribution of sunspots, New Astron. 16, 456-460 (2011). https://doi.org/10.1016/j.newast.2011.04.003
  19. Chang HY, Bimodal distribution of area-weighted latitude of sunspots and solar north-south asymmetry, New Astron. 17, 247-253 (2012). https://doi.org/10.1016/j.newast.2011.07.016
  20. Chang HY, Latitudinal distribution of sunspots and duration of solar cycles, J. Korean Astron. Soc. 48, 325-331 (2015). https://doi.org/10.5303/JKAS.2015.48.6.325
  21. Chang HY, Han JH, Cepstrum analysis of terrestrial impact crater records, J. Astron. Space Sci. 25, 71-76 (2008). https://doi.org/10.5140/JASS.2008.25.2.071
  22. Cho IH, Chang HY, Long term variability of the Sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395
  23. Cho IH, Chang HY, Latitudinal distribution of sunspots revisited, J. Astron. Space Sci. 28, 1-7 (2011). https://doi.org/10.5140/JASS.2011.28.1.001
  24. Cho IH, Kwak YS, Cho KS, Choi, HS, Chang HY, On the relation between the Sun and climate change with the solar northsouth asymmetry, J. Astron. Space Sci. 26 , 25-30 (2009). https://doi.org/10.5140/JASS.2009.26.1.025
  25. Cho IH, Kwak YS, Chang HY, Cho KS, Park YD, et al., Dependence of GCRs influx on the solar north-south asymmetry, J. Atmos. Sol.-Terr, Phys. 73, 1723-1726 (2011). https://doi.org/10.1016/j.jastp.2011.03.007
  26. Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar north-south asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012). https://doi.org/10.1007/s13143-012-0025-3
  27. Cho IH, Hwang J, Park YD, Revisiting solar and heliospheric 1.3-year signals during 1970-2007, Sol. Phys. 289, 707-719 (2014). https://doi.org/10.1007/s11207-013-0365-x
  28. Choi KC, Park MY, Kim JH, Auto-detection of halo CME parameters as the initial condition of solar wind propagation, J. Astron. Space Sci. 34, 315-330 (2017). https://doi.org/10.5140/JASS.2017.34.4.315
  29. Choudhuri AR, Schussler M, Dikpati M, The solar dynamo with meridional circulation, Astron. Astrophys. 303, L29-L32 (1995).
  30. Cotter ESN, Jones AE, Wolff EW, Bauguitte SJB, What controls photochemical NO and NO2 production from Antarctic snow? laboratory investigation assessing the wavelength and temperature dependence, J. Geophys. Res. 108, 4147-4156 (2003). https://doi.org/10.1029/2002JD002602
  31. Damiani A, Storini M, Rafanelli C, Diego P, The hydroxyl radical as an indicator of SEP fluxes in the high-latitude terrestrial atmosphere, Adv. Space Res. 46, 1225-1235 (2010). https://doi.org/10.1016/j.asr.2010.06.022
  32. Duchlev PI, An estimation of the long-term variation of a north-south asymmetry of the long-lived solar filaments, Sol. Phys. 199, 211-215 (2001). https://doi.org/10.1023/A:1010313817889
  33. Duchlev PI, Dermendjiev VN, Periodicities in the N-S asymmetry of long-lived solar filaments, Sol. Phys. 168, 205-210 (1996). https://doi.org/10.1007/BF00145836
  34. Egorova LV, Vovk VYa, Troshichev OA, Influence of variations of the cosmic rays on atmospheric pressure and temperature in the southern geomagnetic pole region, J. Atmos. Sol.-Terr. Phys. 62, 955-966 (2000). https://doi.org/10.1016/S1364-6826(00)00080-8
  35. Forgacs-Dajka E, Major B, Borkovits T, Long-term variation in distribution of sunspot groups, Astron. Astrophys. 424, 311-315 (2004). https://doi.org/10.1051/0004-6361:20040550
  36. Frey MM, Stewart RW, McConnell JR, Bales RC, Atmospheric hydroperoxides in West Antarctica: links to stratospheric ozone and atmospheric oxidation capacity, J. Geophys. Res. 110, D23301-D23317 (2005). https://doi.org/10.1029/2005JD006110
  37. Funke B, Baumgaertner A, Calisto M, Egorova T, Jackman CH, et al., Composition changes after the "Halloween" solar proton event: the high-energy particle precipitation in the atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys. 11, 9089-9139 (2011). https://doi.org/10.5194/acp-11-9089-2011
  38. Garcia HA, Evidence for solar-cycle evolution of north-south flare asymmetry during cycles 20 and 21, Sol. Phys. 127, 185-197 (1990). https://doi.org/10.1007/BF00158522
  39. Garcia RR, Solomon S, A new numerical model of the middle atmosphere. 2. ozone and related species, J. Geophys. Res. 99, 12937-12952 (1994). https://doi.org/10.1029/94JD00725
  40. Georgieva K, Long-term changes in atmospheric circulation, Earth rotation rate and north-south solar asymmetry, Phys. Chem. Earth 27, 433-440 (2002). https://doi.org/10.1016/S1474-7065(02)00023-2
  41. Georgieva K, Kirov B, Bianchi C, Long-term variations in the correlation between solar activity and climate, Mem. Soc. Astron. Ital. 76, 965-968 (2005).
  42. Georgieva K, Kirov B, Tonev P, Guineva V, Atanasov D, Longterm variations in the correlation between NAO and solar activity: the importance of north-south solar activity asymmetry for atmospheric circulation, Adv. Space Res. 40, 1152-1166 (2007). https://doi.org/10.1016/j.asr.2007.02.091
  43. Gigolashvili MS, Japaridze DR, Mdzinarishvili TG, Chargeishvili BB, N-S asymmetry in the solar differential rotation during 1957-1993, Sol. Phys. 227, 27-38 (2005). https://doi.org/10.1007/s11207-005-1214-3
  44. Gleissberg W, The probable behaviour of sunspot cycle 21, Sol. Phys. 21, 240-245 (1971). https://doi.org/10.1007/BF00155794
  45. Hale GE, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315-343 (1908). https://doi.org/10.1086/141602
  46. Hansen SF, Hansen RT, Differential rotation and reconnection as basic causes of some coronal reorientations, Sol. Phys. 44, 503-508 (1975). https://doi.org/10.1007/BF00153228
  47. Hathaway DH, Nandy D, Wilson RM, Reichmann EJ, Evidence that a deep meridional flow sets the sunspot cycle period, Astrophys. J. 589, 665-670 (2003). https://doi.org/10.1086/374393
  48. Howard R, Studies of solar magnetic fields. III - the east-west orientation of field lines, Sol. Phys. 38, 275-287 (1974). https://doi.org/10.1007/BF00162418
  49. Howe R, Christensen-Dalsgaard J, Hill F, Komm RW, Larsen RM, et al., Dynamic variations at the base of the solar convection zone, Science 287, 2456-2460 (2000). https://doi.org/10.1126/science.287.5462.2456
  50. Hwang J, Kim H, Park J, Lee J, Limitations of electromagnetic ion cyclotron wave observations in low earth orbit, J. Astron. Space Sci. 35, 31-37 (2018). https://doi.org/10.5140/JASS.2017.35.1.31
  51. Ichimoto K, Kubota J, Suzuki M, Tohmura I, Kurokawa H, Periodic behaviour of solar flare activity, Nature 316, 422-424 (1985). https://doi.org/10.1038/316422a0
  52. Joshi B, Joshi A, The north-south asymmetry of soft X-ray flare index during solar cycles 21, 22 and 23, Sol. Phys. 219, 343-356 (2004). https://doi.org/10.1023/B:SOLA.0000022977.95023.a7
  53. Joshi B, Pant P, Distribution of $H{\alpha}$ flares during solar cycle 23, Astron. Astrophys. 431, 359-363 (2005). https://doi.org/10.1051/0004-6361:20041986
  54. Kim BY, Chang HY, Short periodicities in latitudinal variation of sunspots, J. Astron. Space Sci. 28, 103-108 (2011). https://doi.org/10.5140/JASS.2011.28.2.103
  55. Kim G, Kim YS, Lee YS, Mesospheric temperatures over Apache Point Observatory ($32^{\circ}N,\;105^{\circ}W$) derived from Sloan digital sky survey spectra, J. Astron. Space Sci. 34, 119-125 (2017a). https://doi.org/10.5140/JASS.2017.34.2.119
  56. Kim JH, Chang HY, Spectral analysis of geomagnetic activity indices and solar wind parameters, J. Astron. Space Sci. 31, 159-167 (2014). https://doi.org/10.5140/JASS.2014.31.2.159
  57. Kim JH, Kim KB, Chang HY, Solar influence on tropical cyclone in Western North Pacific ocean, J. Astron. Space Sci. 34, 257-270 (2017b). https://doi.org/10.5140/JASS.2017.34.4.257
  58. Kim S, Yi Y, Hong IS, Sohn J, Solar insolation effect on the local distribution of lunar hydroxyl, J. Astron. Space Sci. 35, 47-54 (2018). https://doi.org/10.5140/JASS.2017.35.1.47
  59. Kitchatinov LL, Do dynamo-waves propagate along isorotation surfaces?, Astron. Astrophys. 394, 1135-1139 (2002). https://doi.org/10.1051/0004-6361:20021156
  60. Knaack R, Stenflo JO, Berdyugina SV, Periodic oscillations in the north-south asymmetry of the solar magnetic field, Astron. Astrophys. 418, L17-L20 (2004). https://doi.org/10.1051/0004-6361:20040107
  61. Knaack R, Stenflo JO, Berdyugina SV, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21-23. periodicities, north-south asymmetries and r-mode signatures, Astron. Astrophys. 438, 1067-1082 (2005). https://doi.org/10.1051/0004-6361:20042091
  62. Krause F, Radler KH, Mean-field magnetohydrodynamics and dynamo theory (Pergamon, Oxford, 1980).
  63. Krivova NA, Solanki SK, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin, Astron. Astrophys. 394, 701-706 (2002). https://doi.org/10.1051/0004-6361:20021063
  64. Lee EH, Lee DY, Park MY Climate events and cycles during the last glacial-interglacial transition, J. Astron. Space Sci. 34, 207-212 (2017). https://doi.org/10.5140/JASS.2017.34.3.207
  65. Leighton RB, A magneto-kinematic model of the solar cycle, Astrophys. J. 156, 1-26 (1969). https://doi.org/10.1086/149943
  66. Li KJ, Schmieder B, Li QS, Statistical analysis of the X-ray flares ($M\;{\geq}\;1$) during the maximum period of solar cycle 22, Astron. Astrophys. Suppl. Ser. 131, 99-104 (1998). https://doi.org/10.1051/aas:1998254
  67. Li KJ, Liang HF, Yun HS, Gu XM, Statistical behavior of sunspot groups on the solar disk, Sol. Phys. 205, 361-370 (2002). https://doi.org/10.1023/A:1014288424727
  68. Li KJ, Wang JX, Zhan LS, Yun HS, Liang HF, et al., On the latitudinal distribution of sunspot groups over a solar cycle, Sol. Phys. 215, 99-109 (2003). https://doi.org/10.1023/A:1024814505979
  69. Likens GE, Wright RF, Galloway JN, Butler TJ, Acid rain, Sci. Am. 241, 43-51 (1979).
  70. Logan JA, Nitrogen oxides in the troposphere: global and regional budgets, J. Geophys. Res. 88, 10785-10807 (1983). https://doi.org/10.1029/JC088iC15p10785
  71. Maunder EW, Note on the distribution of sun-spots in heliographic latitude, 1874 to 1902, Mon. Not. R. Astron. Soc. 64, 747-761 (1904). https://doi.org/10.1093/mnras/64.8.747
  72. Moon GH, Ha GY, Kang SH, Lee BH, Kim KB, et al., Acidity in precipitation and solar north-south asymmetry, J. Astron. Space Sci. 31, 325-333 (2014). https://doi.org/10.5140/JASS.2014.31.4.325
  73. Mouradian Z, Soru-Escaut I, On the dynamics of the largescale magnetic fields of the sun and the sunspot cycle, Astron. Astrophys. 251, 649-654 (1991).
  74. Nandy D, Choudhuri AR, Toward a mean field formulation of the Babcock-Leighton type solar dynamo: I. ${\alpha}$-coefficient versus Durney's double-ring approach, Astrophys. J. 551, 576-585 (2001). https://doi.org/10.1086/320057
  75. Newton HW, Milsom AS, Note on the observed differences in spottedness of the Sun's northern and southern hemispheres, Mon. Not. R. Astron. Soc. 115, 398-404 (1955). https://doi.org/10.1093/mnras/115.4.398
  76. Obridko VN, Shelting BD, Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles, Adv. Space Res. 40, 1006-1014 (2007). https://doi.org/10.1016/j.asr.2007.04.105
  77. Oliver R, Ballester JL, The north-south asymmetry of sunspot areas during solar cycle 22, Sol. Phys. 152, 481-485 (1994). https://doi.org/10.1007/BF00680451
  78. Ossendrijver AJH, Hoyng P, Schmitt D, Stochastic excitation and memory of the solar dynamo, Astron. Astrophys. 313, 938-948 (1996).
  79. Ozguc A, Ucer C, North-south asymmetries in the green corona brightness between 1947 and 1976, Sol. Phys. 114, 141-146 (1988).
  80. Park JH, Chang HY, Drought over Seoul and its association with solar cycles, J. Astron. Space Sci. 30, 241-246 (2013). https://doi.org/10.5140/JASS.2013.30.4.241
  81. Parker EN, Hydromagnetic dynamo models, Astrophys. J. 122, 293-314 (1955). https://doi.org/10.1086/146087
  82. Parker EN, The generation of magnetic fields in astrophysical bodies. I. the dynamo equations, Astrophys. J. 162, 665-673 (1970). https://doi.org/10.1086/150697
  83. Parungo F, Nagamoto C, Maddl R, A study of the mechanisms of acid rain formation, J. Atmos. Sci. 44, 3162-3174 (1987). https://doi.org/10.1175/1520-0469(1987)044<3162:ASOTMO>2.0.CO;2
  84. Patris N, Delmas R, Legrand M, de Angelis M, Ferron FA, First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods, J. Geophys. Res. 107, 4115-4125 (2002). https://doi.org/10.1029/2001JD000672
  85. Pulkkinen PJ, Brooke J, Pelt J, Tuominen I, Long-term variation of sunspot latitudes, Astron. Astrophys. 341, L43-L46 (1999).
  86. Rieger E, Share GH, Forrest DJ, Kanbach G, Reppin C, et al., A 154-day periodicity in the occurrence of hard solar flares?, Nature 312, 623-625 (1984). https://doi.org/10.1038/312623a0
  87. Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006
  88. Roy JR, The north-south distribution of major solar flare events, sunspot magnetic classes and sunspot areas (1955-1974), Sol. Phys. 52, 53-61 (1977). https://doi.org/10.1007/BF00935789
  89. Schlamminger L, Hemispherical asymmetries in sunspot areas and auroral frequencies, Sol. Phys. 135, 407-413 (1991). https://doi.org/10.1007/BF00147510
  90. Schwabe SH, Die Sonne, Astron. Nachr. 20, 283-288 (1843).
  91. Solanki SK, Wenzler T, Schmitt D, 2008, Moments of the latitudinal dependence of the sunspot cycle: a new diagnostic of dynamo models, Astron. Astrophys. 483, 623-632 (2008). https://doi.org/10.1051/0004-6361:20054282
  92. Storini M, Damiani A, Effects of the January 2005 GLE/SPE events on minor atmospheric components, Proceedings of the 30th International Cosmic Ray Conference, Merida, Yucatan, Mexico 3-11 July 2007.
  93. Svensmark H, Cosmoclimatology: a new theory emerges, Astron. Geophys. 48, 1.18-1.24 (2007). https://doi.org/10.1111/j.1468-4004.2007.48118.x
  94. Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1
  95. Swinson DB, Koyama H, Saito T, Long-term variations in north-south asymmetry of solar activity, Sol. Phys. 106, 35-42 (1986). https://doi.org/10.1007/BF00161351
  96. Temmer M, Veronig A, Hanslmeier A, Otruba W, Messerotti M, Statistical analysis of solar $H{\alpha}$ flares, Astron. Astrophys. 375, 1049-1061 (2001). https://doi.org/10.1051/0004-6361:20010908
  97. Temmer M, Veronig A, Hanslmeier A, Hemispheric sunspot numbers $R_n$ and $R_s$: catalogue and N-S asymmetry analysis, Astron. Astrophys. 390, 707-715 (2002). https://doi.org/10.1051/0004-6361:20020758
  98. Temmer M, Rybak J, Bendik P, Veronig A, Vogler F, et al., Hemispheric sunspot numbers $R_n$ and $R_s$ from 1945-2004: catalogue and N-S asymmetry analysis for solar cycles 18-23, Astron. Astrophys. 447, 735-743 (2006). https://doi.org/10.1051/0004-6361:20054060
  99. Ternullo M, The butterfly diagram fine structure, Sol. Phys. 240, 153-164 (2007a). https://doi.org/10.1007/s11207-006-0261-8
  100. Ternullo M, Looking inside the butterfly diagram, Astron. Nachr. 328, 1023-1032 (2007b). https://doi.org/10.1002/asna.200710868
  101. Ternullo M, The butterfly diagram internal structure, Astrophys. Space Sci. 328, 301-305 (2010). https://doi.org/10.1007/s10509-010-0270-9
  102. Traversi R, Usoskin IG, Solanki SK, Becagli S, Frezzotti M, et al., Nitrate in polar ice: a new tracer of solar variability, Sol. Phys. 280, 237-254 (2012). https://doi.org/10.1007/s11207-012-0060-3
  103. Tritakis VP, Mavromichalaki H, Petropoulos B, Asymmetric variations of the coronal green line intensity, Sol. Phys. 115, 367-384 (1988). https://doi.org/10.1007/BF00148734
  104. Verma VK, On the increase of solar activity in the southern hemisphere during solar cycle 21, Sol. Phys. 114, 185-188 (1988). https://doi.org/10.1007/BF00193078
  105. Verma VK, On the north-south asymmetry of solar activity cycles, Astrophys. J. 403, 797-800 (1993). https://doi.org/10.1086/172250
  106. Vernova ES, Mursula K, Tyasto MI, Baranov DG, A new pattern for the north-south asymmetry of sunspots, Sol. Phys. 205, 371-382 (2002). https://doi.org/10.1023/A:1014264428300
  107. Vizoso G, Ballester JL, Periodicities in the north-south asymmetry of solar activity, Sol. Phys. 119, 411-414 (1989). https://doi.org/10.1007/BF00146187
  108. Vizoso G, Ballester JL, The north-south asymmetry of sunspots, Astron. Astrophys. 229, 540-546 (1990).
  109. Waldmeier M, The asymmetry of solar activity in the years 1959-1969, Sol. Phys. 20, 332-344 (1971). https://doi.org/10.1007/BF00159763
  110. White OR, Trotter DE, Note on the distribution of sunspots between the north and south solar hemispheres and its variation with the solar cycle, Astrophys. J. Suppl. Ser. 33, 391 (1977). https://doi.org/10.1086/190432
  111. Wisniewski J, Kinsman DJ, An overview of acid rain monitoring activities in north America, Bull. Amer. Meteor. Soc. 63, 598-618 (1982). https://doi.org/10.1175/1520-0477(1982)063<0598:AOOARM>2.0.CO;2
  112. Yi W, The north-south asymmetry of sunspot distribution, J. R. Astron. Soc. Can. 86, 89-98 (1992).
  113. Yoshimura H, Solar-cycle dynamo wave propagation, Astrophys. J. 201, 740-748 (1975). https://doi.org/10.1086/153940
  114. Zeller EJ, Parker BC, Nitrate ion in Antarctic firn as a marker for solar activity, Geophys. Res. Lett. 8, 895-898 (1981). https://doi.org/10.1029/GL008i008p00895
  115. Zeller EJ, Dreschhoff GAM, Anomalous nitrate concentrations in polar ice cores - do they result from solar particle injections into the polar atmosphere?, Geophys. Res. Lett. 22, 2521-2524 (1995). https://doi.org/10.1029/95GL02560
  116. Zharkov SI, Zharkova VV, Statistical analysis of the sunspot area and magnetic flux variations in 1996-2005 extracted from the solar feature catalogue, Adv. Space Res. 38, 868-875 (2006). https://doi.org/10.1016/j.asr.2006.03.035
  117. Zolotova NV, Ponyavin DI, Phase asynchrony of the northsouth sunspot activity, Astron. Astrophys. 449, L1-L4 (2006). https://doi.org/10.1051/0004-6361:200600013