DOI QR코드

DOI QR Code

CERTAIN GRONWALL TYPE INEQUALITIES ASSOCIATED WITH RIEMANN-LIOUVILLE k- AND HADAMARD k-FRACTIONAL DERIVATIVES AND THEIR APPLICATIONS

  • Nisar, Kottakkaran Sooppy (Department of Mathematics, College of Arts and Science-Wadi Aldawaser, Prince Sattam bin Abdulaziz University) ;
  • Rahman, Gauhar (Department of Mathematics, International Islamic University) ;
  • Choi, Junesang (Department of Mathematics, Dongguk University) ;
  • Mubeen, Shahid (Department of Mathematics, University of Sargodha) ;
  • Arshad, Muhammad (Department of Mathematics, International Islamic University)
  • Received : 2018.01.31
  • Accepted : 2018.02.19
  • Published : 2018.05.31

Abstract

We aim to establish certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives. The results presented here are sure to be new and potentially useful, in particular, in analyzing dependence solutions of certain k-fractional differential equations of arbitrary real order with initial conditions. Some interesting special cases of our main results are also considered.

Keywords

References

  1. R. P. Agarwal, S. Deng and W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput. 165 (2005), 599-612.
  2. S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10(3) (2009), Article 86.
  3. P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mmes limites, Proc. Math. Soc. Charkov 2 (1882), 93-98.
  4. C. Corduneanu, Principles of Differential and Integral Equations, 55, Allyn and Bacon, Boston, 1971
  5. Z. Dahmani and L. Tabharit, On weighted Gruss type inequalities via fractional integration, J. Adv. Res. Pure Math. 2 (2010), 31-38.
  6. D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625. https://doi.org/10.1006/jmaa.1996.0456
  7. R. Daz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat. 15(2) (2007), 179-192.
  8. K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. https://doi.org/10.1006/jmaa.2000.7194
  9. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
  10. V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res Notes Math. 301, Longman Scientific & Technical; Harlow, Co-published with John Wiley, New York, 1994.
  11. S. Mubeen and G. M. Habibullah, k-fractional integrals and application, Int. J. Contem. Math. Sci. 7 (2012), 89-94.
  12. K. S. Ntouyas, P. Agarwal and J. Tariboon, On Polya-Szego and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal. 10(2) (2016), 491-504.
  13. B. G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, New York, 1998.
  14. B. G. Pachpatte, On some generalizations of Bellman's lemma, J. Math. Anal. Appl. 5 (1975), 141-150.
  15. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Deriva-tives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press, San Diego, CA, 1999.
  16. D. Qian, Z. Gong and C. Li, A generalized Gronwall inequality and its application to fractional differential equations with Hadamard derivatives, http://nsc10.cankaya.edu.tr/proceedings/PAPERS/Symp2-FractionalCalculus.
  17. M. Z. Sarikaya, Z. Dahmani, M. E. Kiris and F. Ahmad, (k; s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat. 45(1) (2016), 77-89.
  18. E. Set, M. Tomar and M. Z. Sarikaya, On generalized Gruss type inequalities for k-fractional integrals, Appl. Math. Comput. 269 (2015), 29-34.
  19. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  20. M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, J. Inequal. Appl. 2016 (2016), Article ID 234.
  21. A. Wiman, Uber den fundamentalsatz in der theorie der funktionen $E_{\alpha}(x)$, Acta Math. 29 (1905), 191-201. https://doi.org/10.1007/BF02403202
  22. A. Wiman, Uber die Nullstellen der funktionen $E_{\alpha}(x)$, Acta Math. 29 (1905), 217-234. https://doi.org/10.1007/BF02403204
  23. H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328 (2007), 1075-1081. https://doi.org/10.1016/j.jmaa.2006.05.061

Cited by

  1. Chebyshev type inequalities via generalized fractional conformable integrals vol.2019, pp.1, 2018, https://doi.org/10.1186/s13660-019-2197-1
  2. Hadamard k-fractional inequalities of Fejér type for GA-s-convex mappings and applications vol.2019, pp.1, 2018, https://doi.org/10.1186/s13660-019-2216-2
  3. The Minkowski inequalities via generalized proportional fractional integral operators vol.2019, pp.1, 2019, https://doi.org/10.1186/s13662-019-2229-7
  4. Certain inequalities via generalized proportional Hadamard fractional integral operators vol.2019, pp.1, 2018, https://doi.org/10.1186/s13662-019-2381-0
  5. Bounds of Generalized Proportional Fractional Integrals in General Form via Convex Functions and Their Applications vol.8, pp.1, 2018, https://doi.org/10.3390/math8010113
  6. New Investigation on the Generalized K-Fractional Integral Operators vol.8, pp.None, 2018, https://doi.org/10.3389/fphy.2020.00025
  7. Certain Fractional Proportional Integral Inequalities via Convex Functions vol.8, pp.2, 2018, https://doi.org/10.3390/math8020222
  8. Tempered Fractional Integral Inequalities for Convex Functions vol.8, pp.4, 2020, https://doi.org/10.3390/math8040500
  9. Certain Hadamard Proportional Fractional Integral Inequalities vol.8, pp.4, 2018, https://doi.org/10.3390/math8040504
  10. On the weighted fractional Pólya-Szegö and Chebyshev-types integral inequalities concerning another function vol.2020, pp.1, 2018, https://doi.org/10.1186/s13662-020-03075-0