Abstract
In [4], the authors show that if ${\mathbb{X}}$ is a ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type ($d_1$, ${\ldots}$, $d_s$) with $d_s$ > $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(md_s-1)$ is the number of lines containing exactly $d_s-points$ of ${\mathbb{X}}$ for $m{\geq}2$. They also show that if ${\mathbb{X}}$ is a ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type (1, 2, ${\ldots}$, s) with $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(m{\mathbb{X}}-1)$ is the number of lines containing exactly s-points in ${\mathbb{X}}$ for $m{\geq}s+1$. In this paper, we explore a standard ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ and find that if ${\mathbb{X}}$ is a standard ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type (1, 2, ${\ldots}$, s) with $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(m{\mathbb{X}}-1)=3$, which is the number of lines containing exactly s-points in ${\mathbb{X}}$ for $m{\geq}2$ instead of $m{\geq}s+1$.