J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2018.25.1.31 Volume 25, Number 1 (February 2018), Pages 31–38

A SYMBOLIC POWER OF THE IDEAL OF A STANDARD $\ensuremath{\Bbbk}\mbox{-}{\rm CONFIGURATION}$ IN \mathbb{P}^2

Yong-Su Shin

ABSTRACT. In [4], the authors show that if X is a k-configuration in \mathbb{P}^2 of type (d_1, \ldots, d_s) with $d_s > s \ge 2$, then $\Delta \mathbf{H}_{m\mathbb{X}}(md_s - 1)$ is the number of lines containing exactly d_s -points of X for $m \ge 2$. They also show that if X is a k-configuration in \mathbb{P}^2 of type $(1, 2, \ldots, s)$ with $s \ge 2$, then $\Delta \mathbf{H}_{m\mathbb{X}}(m\mathbb{X} - 1)$ is the number of lines containing exactly s-points in X for $m \ge s + 1$. In this paper, we explore a standard k-configuration in \mathbb{P}^2 and find that if X is a standard k-configuration in \mathbb{P}^2 of type $(1, 2, \ldots, s)$ with $s \ge 2$, then $\Delta \mathbf{H}_{m\mathbb{X}}(m\mathbb{X} - 1) = 3$, which is the number of lines containing exactly s-points in X for $m \ge 2$ instead of $m \ge s + 1$.

1. INTRODUCTION

Let $\mathbb{X} = \{\wp_1, \ldots, \wp_s\}$ be a set of distinct points in \mathbb{P}^n . If I_{\wp_i} is the ideal associated to \wp_i in $R = \Bbbk[x_0, x_1, \ldots, x_n]$, where \Bbbk is an infinite field of any characteristic, then the homogeneous ideal associated to \mathbb{X} is the ideal $I_{\mathbb{X}} = I_{\wp_1} \cap \cdots \cap I_{\wp_s}$. Given spositive integers m_1, \ldots, m_s (not necessarily distinct), the subscheme in \mathbb{P}^n defined by the ideal $I_{\mathbb{Z}} = I_{\wp_1}^{m_1} \cap \cdots \cap I_{\wp_s}^{m_s}$ is called a set of *fat points*. We say that m_i is the *multiplicity* of the point \wp_i . If $m_1 = \cdots = m_s = m$, then \mathbb{Z} is a *homogeneous set* of *fat points* of multiplicity m, which we are interested in this article. In this case, we write $m\mathbb{X}$ for \mathbb{Z} , and $I_{m\mathbb{X}}$ for $I_{\mathbb{Z}}$. It is well known that $I_{m\mathbb{X}} = I_{\mathbb{X}}^{(m)}$, the m-th symbolic power of the ideal $I_{\mathbb{X}}$ (see [1, 2, 3, 4]).

Let I be a homogeneous ideal of R. The Hilbert function of R/I, denoted $\mathbf{H}_{R/I}$, is the numerical function $\mathbf{H}_{R/I} : \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ defined by

$$\mathbf{H}_{R/I}(i) := \dim_{\mathbb{K}} R_i - \dim_{\mathbb{K}} I_i \quad \text{for} \quad i \ge 0,$$

Key words and phrases. symbolic powers, regular powers, points, star configurations.

 $\bigodot 2018$ Korean Soc. Math. Educ.

Received by the editors December 06, 2017. Accepted February 21, 2018

 $^{2010\} Mathematics\ Subject\ Classification.\ 13A17,\ 14M05.$

This research was supported by a grant from Sungshin Women's University.

Yong-Su Shin

where R_i , respectively I_i , denotes the *i*-th graded component of R, respectively I. If $I = I_{\mathbb{X}}$ is a defining ideal of a subscheme \mathbb{X} of \mathbb{P}^n , then we denote the Hilbert function $\mathbf{H}_{R/I_{\mathbb{X}}}$ by $\mathbf{H}_{\mathbb{X}}$.

In [9], Roberts and Roitman introduced special configurations of points in \mathbb{P}^2 , which they named \Bbbk -confi-gurations. In the late 1990's, this definition was extended to \mathbb{P}^n by Geramita, Harima, and Shin (see [7, 8]). In [7], the authors prove that there is a one to one correspondence between \Bbbk -configurations in \mathbb{P}^n and 0-dimensional differentiable *O*-sequences, i.e., Hilbert functions of sets of points in \mathbb{P}^n . They also find a graded minimal free resolution of a \Bbbk -configuration in \mathbb{P}^n , and so the Hilbert function of a \Bbbk -configuration in \mathbb{P}^n . Interestingly, a graded minimal free resolution or the Hilbert function of a \Bbbk -configuration in \mathbb{P}^n depends upon only the type (see [8, Corollary 3.7]). However, \Bbbk -configurations of the same type can have different geometric properties. In other words, with notation as in Definition 2.1 we cannot distinguish how many lines among the *s*-lines $\mathbb{L}_1, \ldots, \mathbb{L}_s$ can contain exactly d_s points in \mathbb{X} . In [4], the authors show the following theorem.

Theorem 1.1 ([4, Theorems 3.1 and 4.7]). Let $\mathbb{X} \subseteq \mathbb{P}^2$ be a k-configuration of type $d = (d_1, \ldots, d_s) \neq (1)$. Then there exists an integer m_0 such that for all $m \geq m_0$,

 $\Delta \mathbf{H}_{m\mathbb{X}}(md_s - 1) = number of lines containing exactly d_s points of \mathbb{X},$

where $\Delta \mathbf{H}_{m\mathbb{X}}(-)$ is the first difference function of the Hilbert function of fat points of multiplicity m supported on \mathbb{X} . Furthermore, if $d_s > s$, then $m_0 = 2$, and if $d_s = s$, then $m_0 = s + 1$.

Indeed, we don't doubt that the above theorem holds for $m_0 = 2$ instead of $m_0 = s + 1$ even when $d_s = s$. In this article, we prove that this holds for $m \ge 2$ if a k-configuration in \mathbb{P}^2 is standard.

2. A Symbolic Power of The Ideal of A Standard \Bbbk -configuration in \mathbb{P}^2

We recall the definition of a k-configuration in \mathbb{P}^2 .

Definition 2.1 ([7, 8, 9]). A k-configuration of points in \mathbb{P}^2 is a finite set X of points in \mathbb{P}^2 which satisfies the following conditions: there exist integers $1 \leq d_1 < \cdots < d_s$, subsets X_1, \ldots, X_s of X, and distinct lines $\mathbb{L}_1, \ldots, \mathbb{L}_s \subseteq \mathbb{P}^2$ such that:

(1)
$$\mathbb{X} = \bigcup_{i=1}^{s} \mathbb{X}_{i}$$

- (2) $|\mathbb{X}_i| = d_i$ and $\mathbb{X}_i \subseteq \mathbb{L}_i$ for each $i = 1, \ldots, s$, and;
- (3) \mathbb{L}_i $(1 < i \leq s)$ does not contain any points of \mathbb{X}_j for all $1 \leq j < i$.

In this case, the k-configuration is said to be of type (d_1, \ldots, d_s) .

Let (d_1, \ldots, d_s) be the parameters of a k-configuration X in \mathbb{P}^2 . We shall construct a set of points which realizes these parameters and which are located in the following lines.

$$\mathbb{L}_1: x_1 = 0; \ \mathbb{L}_2: x_1 = 1; \ \cdots; \ \mathbb{L}_s: x_1 = s - 1.$$

(Note that this is a family of lines parallel to the x_0 -axis.) In each of these lines we shall place points as follows: in a line \mathbb{L}_i , we place the d_i -points in \mathbb{X} in the following way.

 $\begin{array}{ccc} d_1 & \text{points with coordinates} & (1, s-1, 1), \dots, (d_1, s-1, 1), \\ d_2 & \text{points with coordinates} & (1, s-2, 1), \dots, (d_2, s-2, 1), \\ & \vdots \\ d_{s-1} & \text{points with coordinates} & (1, 1, 1), \dots, (d_{s-1}, 1, 1), \\ d_s & \text{points with coordinates} & (1, 0, 1), \dots, (d_s, 0, 1). \end{array}$

A k-configuration of points in \mathbb{P}^2 constructed as above will be called a *standard* k-configuration in \mathbb{P}^2 .

Before we prove our main theorem, we introduce a result in [2], which we shall often use in this section. Let $\mathbb{Z} = \mathbb{Z}_0$ be a fat point subscheme of \mathbb{P}^2 . Choose a sequence of lines $\mathbb{L}_1, \ldots, \mathbb{L}_r$ and define \mathbb{Z}_i to be the residual of \mathbb{Z}_{i-1} with respect to the line \mathbb{L}_i . Define the associated *reduction vector* $\mathbf{v} = (v_1, \ldots, v_r)$ by taking $v_i = \deg(\mathbb{L}_i \cap \mathbb{Z}_{i-1})$. In particular, v_i is the sum of multiplicities of the points in $\mathbb{L}_i \cap \mathbb{Z}_{i-1}$. Given $\mathbf{v} = (v_1, \ldots, v_r)$, we define two functions

(2.1)
$$f_{\mathbf{v}}(t) = \sum_{i=0}^{r-1} \min(t-i+1, v_{i+1}), \text{ and}$$

(2.2)
$$F_{\mathbf{v}}(t) = \min_{0 \le i \le r} \left(\binom{t+2}{2} - \binom{t-i+2}{2} + \sum_{j=i+1}^r v_j \right).$$

Theorem 2.2 ([2, Theorem 1.1]). Let $\mathbb{Z} = \mathbb{Z}_0$ be a fat point scheme in \mathbb{P}^2 with reduction vector $\mathbf{v} = (v_1, \ldots, v_r)$ such that $\mathbb{Z}_{r+1} = \emptyset$. Then the Hilbert function $\mathbf{H}_{\mathbb{Z}}(t)$ of \mathbb{Z} is bounded by $f_{\mathbf{v}}(t) \leq \mathbf{H}_{\mathbb{Z}}(t) \leq F_{\mathbf{v}}(t)$.

Example 2.3. Consider a standard k-configuration X in \mathbb{P}^2 of type (1, 2, 3, 4, 5, 6, 7) with m = 3 (see Figure 1).

Figure 1. a standard k-configuration of type (1, 2, 3, 4, 5, 6, 7)

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
19 - i + 1	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
v_{i+1}	21	20	19	16	13	10	7	4	12	10	8	6	4	2	1	5	4	3	2	1
	\mathbb{L}_7	\mathbb{L}_8	\mathbb{L}_1	\mathbb{L}_2	\mathbb{L}_3	\mathbb{L}_4	\mathbb{L}_5	\mathbb{L}_6	\mathbb{L}_1	\mathbb{L}_2	\mathbb{L}_3	\mathbb{L}_4	\mathbb{L}_5	\mathbb{L}_6	\mathbb{L}_7	\mathbb{L}_1	\mathbb{L}_2	\mathbb{L}_3	\mathbb{L}_4	\mathbb{L}_5

By Theorem 2.2, one can see that

$$f_{\mathbf{v}}(19) = \sum_{i=0}^{19} \min(19 - i + 1, v_{i+1}) \\ = \left[\sum_{i=0}^{19} v_{i+1}\right] - 3 = \deg(3\mathbb{X}) - 3.$$

Moreover, if we take i = 3, then

$$F_{\mathbf{v}}(19) \leq \binom{19+2}{2} - \binom{19-3+2}{2} + \sum_{j=4}^{20} v_j \\ = \deg(3\mathbb{X}) - 3,$$

and so

$$\mathbf{H}_{3\mathbb{X}}(19) = \deg(3\mathbb{X}) - 3.$$

Moreover, since $reg(3X) = 3 \cdot 7 = 21$, we get that

$$\mathbf{H}_{3\mathbb{X}}(20) = \deg(3\mathbb{X}).$$

Thus

$$\Delta \mathbf{H}_{3\mathbb{X}}(20) = 3,$$

which is the number of lines containing exactly 7-points in X.

Using the same idea as in Example 2.3, we can obtain the following theorem. Indeed, in [4], the following theorem was mentioned without any proof (see [4, Remark 4.8]), so we attempt a precise proof and calculation with a visualization of construction here.

Theorem 2.4. Let \mathbb{X} be a standard \mathbb{k} -configuration in \mathbb{P}^2 of type $(1, 2, 3, \ldots, s)$ with $s \geq 2$. Then

$$\Delta \mathbf{H}_{m\mathbb{X}}(ms-1) = 3$$

which is the number of lines containing exactly s-points in X for $m \geq 2$.

Figure 2. a standard k-configuration in \mathbb{P}^2 of type $(1, 2, \ldots, s)$

Proof. We define the lines as follows (see Figure 2).

- For $1 \le i \le s 1$, \mathbb{L}_i is a vertical line containing (s i + 1)-points.
- \mathbb{L}_s is a diagonal line containing *s*-points.
- \mathbb{L}_{s+1} is a bottom horizontal line containing *s*-points.

We now describe how to construct the components of a reduction vector \mathbf{v} .

(1) For $1 \le i \le s+1$,

 $v_1 = ms =$ the number of points on a line \mathbb{L}_s ,

 $v_2 = ms - 1$ = the number of points on a line \mathbb{L}_{s+1} ,

 $v_3 = m(s-2) + (m-1) \cdot 2$ = the number of points on a line \mathbb{L}_1 ,

 $v_4 = m(s-3) + (m-1) \cdot 2 =$ the number of points on a line \mathbb{L}_2 , \vdots \vdots \vdots

 $v_{i+2} = m(s-i-1) + (m-1) \cdot 2 =$ the number of points on a line \mathbb{L}_i , \vdots \vdots

 $v_s = m \cdot 1 + (m-1) \cdot 2 =$ the number of points on a line \mathbb{L}_{s-2} , $v_{s+1} = (m-1) \cdot 2 =$ the number of points on a line \mathbb{L}_{s-1} .

(2) If $0 \le i \le 2$, then

$$\min(ms - i - 1, v_{i+1}) = ms - i - 1.$$

Yong-Su Shin

(3) If
$$3 \le i \le s$$
, then
 $(ms - i - 1) - v_{i+1} = (ms - i - 1) - [m(s - i) - (m - 1) \cdot 2]$
 $= (m - 1)i + 2m - 3 > 0.$

 So

$$\min(ms - i - 1, v_{i+1}) = v_{i+1},$$

for such i.

(1) For $\ell s + 2 \leq i+1 = \ell s + j+1 \leq \ell s + s + 1$ with $1 \leq \ell \leq m-2$, and $1 \leq j \leq s$, $v_{\ell s+2} = (m-\ell)(s-2) + (m-\ell-1) \cdot 2 =$ the number of points on a line \mathbb{L}_1 , $v_{\ell s+3} = (m-\ell)(s-3) + (m-\ell-1) \cdot 2 =$ the number of points on a line \mathbb{L}_2 , $v_{\ell s+4} = (m-\ell)(s-4) + (m-\ell-1) \cdot 2 =$ the number of points on a line \mathbb{L}_3 , $v_{\ell s+5} = (m-\ell)(s-5) + (m-\ell-1) \cdot 2 =$ the number of points on a line \mathbb{L}_4 , \vdots \vdots

 $v_{\ell s+j+1}(m-\ell)(s-j-1) + (m-\ell-1) \cdot 2 = \text{the number of points on a line } \mathbb{L}_j,$ $\vdots \qquad \vdots$

 $v_{(\ell+1)s-1} = (m-\ell) \cdot 1 + (m-\ell-1) \cdot 2 =$ the number of points on a line \mathbb{L}_{s-2} ,

 $v_{(\ell+1)s} = (m - \ell - 1) \cdot 2 = \text{the number of points on a line } \mathbb{L}_{s-1},$ $v_{(\ell+1)s+1} = (m - \ell - 1) \cdot 1 = \text{the number of points on a line } \mathbb{L}_s.$ So, for $1 \le j \le s - 1$, $(ms - i - 1) - v_{i+1} = (ms - (\ell s + j) - 1) - [(m - \ell)(s - j - 1) + (m - \ell - 1) \cdot 2]$ $= (m - \ell - 1)(j - 1) \ge 0,$

and for j = s, i.e., $i = \ell s + s$ $(ms - (\ell s + s) - 1) - v_{\ell(s+1)+1} = (ms - (\ell s + s) - 1) - (m - \ell - 1) \cdot 1$ $= (s - 1)(m - \ell) - s$ $\geq 2(s - 1) - s$, (since $m - \ell \geq 2$) ≥ 0 .

Therefore,

$$\min(ms - i - 1, v_{i+1}) = v_{i+1},$$

for such i.

Thus,

$$\min(ms - i - 1, v_{i+1}) = v_{i+1},$$

for such i.

Moreover, one can easily show that

$$\min(ms - i, v_{i+1}) = v_{i+1}, \quad \text{for every } i \ge 0.$$

We now calculate the total sum of components of the reduction vector.

$$(2ms-1) + \sum_{\ell=1}^{m-1} \sum_{i=1}^{s-1} \left[(m-\ell+1)(s-i-1) + (m-\ell) \cdot 2 \right] + \frac{(s-1)(s-2)}{2} + \frac{(m-1)(m-2)}{2} = \frac{m(m+1)}{2} \cdot \frac{s(s+1)}{2} = \deg(m\mathbb{X}).$$

By Theorem 2.2, one can obtain

$$\begin{aligned} &f_{\mathbf{v}}(ms-2) &= F_{\mathbf{v}}(ms-2) &= \mathbf{H}_{m\mathbb{X}}(ms-2) = \deg(m\mathbb{X}) - 3, & \text{and}, \\ &f_{\mathbf{v}}(ms-1) &= F_{\mathbf{v}}(ms-1) &= \mathbf{H}_{m\mathbb{X}}(ms-2) = \deg(m\mathbb{X}). \end{aligned}$$

Thus, we have

$$\Delta \mathbf{H}_{m\mathbb{X}}(ms-1) = 3,$$

as we wished.

Remark 2.5. In the proof of Theorem 2.4, we precisely calculate the two total sums of components of the reduction vectors, and show that those two numbers exactly match to $\Delta \mathbf{H}_{m\mathbb{X}}(m\mathbb{X}-2)$ and $\Delta \mathbf{H}_{m\mathbb{X}}(m\mathbb{X}-1)$, respectively. However, in [4], the authors do not mention the total sum of components of the reduction vectors for the proofs of their theorems.

Yong-Su Shin

It is known that if either X is a standard k-configuration in \mathbb{P}^2 or s = 2, then

 $\Delta \mathbf{H}_{m\mathbb{X}}(ms-1) =$ the number of lines containing exactly s-points in X.

(see Theorem 2.4). So the following question is still open in general.

Question 2.6. Let X be a k-configuration in \mathbb{P}^2 of type $(1, 2, \ldots, s)$ with $s \ge 2$. Is it true that

 $\Delta \mathbf{H}_{m\mathbb{X}}(ms-1) = \text{the number of lines containing exactly s-points in } \mathbb{X} \text{ for } m \geq 2?$

References

- C. Bocci & B. Harbourne: Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19 (2010), no. 3, 399-417.
- 2. S. Cooper, B. Harbourne & Z. Teitler: Combinatorial bounds on Hilbert functions of fat points in projective space. J. Pure Appl. Algebra **215** (2011), 2165-2179.
- 3. F. Galetto, Anthony V. Geramita, Y.S. Shin & A. Van Tuyl: The Symbolic Defect of an Ideal. In preparation.
- 4. F. Galetto, Y.S. Shin & A. Van Tuyl: Distinguishing k-configurations. In preparation.
- A.V. Geramita, B. Harbourne & J.C. Migliore: Star Configurations in Pⁿ. J. Algebra 376 (2013), 279-299.
- 6. A.V. Geramita, B. Harbourne, J.C. Migliore & U. Nagel: Matroid Configurations and Symbolic Powers of Their Ideals. In preparation.
- 7. A.V. Geramita, T. Harima & Y.S. Shin: An Alternative to the Hilbert function for the ideal of a finite set of points in \mathbb{P}^n . Illinois J. of Mathematics. **45** (2001), no. 1, 1-23.
- A.V. Geramita, T. Harima & Y.S. Shin: Extremal point sets and Gorenstein ideals. Adv. Math. 152 (2000), 78-119.
- L.G. Roberts & M. Roitman: On Hilbert functions of reduced and of integral algebras.
 J. Pure Appl. Algebra 56 (1989), 85-104.

DEPARTMENT OF MATHEMATICS, SUNGSHIN WOMEN'S UNIVERSITY, SEOUL 02844, KOREA *Email address*: ysshin@sungshin.ac.kr

38