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A SYMBOLIC POWER OF THE IDEAL OF A STANDARD

k-CONFIGURATION IN P
2

Yong-Su Shin

Abstract. In [4], the authors show that if X is a k-configuration in P
2 of type

(d1, . . . , ds) with ds > s ≥ 2, then ∆HmX(mds−1) is the number of lines containing
exactly ds-points of X for m ≥ 2. They also show that if X is a k-configuration
in P

2 of type (1, 2, . . . , s) with s ≥ 2, then ∆HmX(mX − 1) is the number of lines
containing exactly s-points in X for m ≥ s+1. In this paper, we explore a standard

k-configuration in P
2 and find that if X is a standard k-configuration in P

2 of type
(1, 2, . . . , s) with s ≥ 2, then ∆HmX(mX − 1) = 3, which is the number of lines
containing exactly s-points in X for m ≥ 2 instead of m ≥ s+ 1.

1. Introduction

Let X = {℘1, . . . , ℘s} be a set of distinct points in P
n. If I℘i

is the ideal associated

to ℘i in R = k[x0, x1, . . . , xn], where k is an infinite field of any characteristic, then

the homogeneous ideal associated to X is the ideal IX = I℘1
∩ · · · ∩ I℘s

. Given s

positive integers m1, . . . ,ms (not necessarily distinct), the subscheme in P
n defined

by the ideal IZ = Im1
℘1

∩ · · · ∩ Ims

℘s
is called a set of fat points. We say that mi is the

multiplicity of the point ℘i. If m1 = · · · = ms = m, then Z is a homogeneous set

of fat points of multiplicity m, which we are interested in this article. In this case,

we write mX for Z, and ImX for IZ. It is well known that ImX = I
(m)
X

, the m-th

symbolic power of the ideal IX (see [1, 2, 3, 4]).

Let I be a homogeneous ideal of R. The Hilbert function of R/I, denoted HR/I ,

is the numerical function HR/I : N ∪ {0} → N ∪ {0} defined by

HR/I(i) := dimk Ri − dimk Ii for i ≥ 0,
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where Ri, respectively Ii, denotes the i-th graded component of R, respectively I.

If I = IX is a defining ideal of a subscheme X of Pn, then we denote the Hilbert

function HR/IX by HX.

In [9], Roberts and Roitman introduced special configurations of points in P
2,

which they named k-confi- gurations. In the late 1990’s, this definition was extended

to P
n by Geramita, Harima, and Shin (see [7, 8]). In [7], the authors prove that there

is a one to one correspondence between k-configurations in P
n and 0-dimensional

differentiable O-sequences, i.e., Hilbert functions of sets of points in P
n. They also

find a graded minimal free resolution of a k-configuration in P
n, and so the Hilbert

function of a k-configuration in P
n. Interestingly, a graded minimal free resolution

or the Hilbert function of a k-configuration in P
n depends upon only the type (see

[8, Corollary 3.7]). However, k-configurations of the same type can have different

geometric properties. In other words, with notation as in Definition 2.1 we cannot

distinguish how many lines among the s-lines L1, . . . ,Ls can contain exactly ds-

points in X. In [4], the authors show the following theorem.

Theorem 1.1 ([4, Theorems 3.1 and 4.7]). Let X ⊆ P
2 be a k-configuration of type

d = (d1, . . . , ds) 6= (1). Then there exists an integer m0 such that for all m ≥ m0,

∆HmX(mds − 1) = number of lines containing exactly ds points of X,

where ∆HmX(−) is the first difference function of the Hilbert function of fat points

of multiplicity m supported on X. Furthermore, if ds > s, then m0 = 2, and if

ds = s, then m0 = s+ 1.

Indeed, we don’t doubt that the above theorem holds for m0 = 2 instead of

m0 = s + 1 even when ds = s. In this article, we prove that this holds for m ≥ 2 if

a k-configuration in P
2 is standard.

2. A Symbolic Power of The Ideal of A Standard

k-configuration in P
2

We recall the definition of a k-configuration in P
2.

Definition 2.1 ([7, 8, 9]). A k-configuration of points in P
2 is a finite set X of points

in P
2 which satisfies the following conditions: there exist integers 1 6 d1 < · · · < ds,

subsets X1, . . . ,Xs of X, and distinct lines L1, . . . ,Ls ⊆ P
2 such that:

(1) X =
⋃s

i=1Xi;



A SYMBOLIC POWER OF THE IDEAL 33

(2) |Xi| = di and Xi ⊆ Li for each i = 1, . . . , s, and;

(3) Li (1 < i 6 s) does not contain any points of Xj for all 1 ≤ j < i.

In this case, the k-configuration is said to be of type (d1, . . . , ds).

Let (d1, . . . , ds) be the parameters of a k-configuration X in P
2. We shall construct

a set of points which realizes these parameters and which are located in the following

lines.

L1 : x1 = 0; L2 : x1 = 1; · · · ; Ls : x1 = s− 1.

(Note that this is a family of lines parallel to the x0-axis.) In each of these lines we

shall place points as follows: in a line Li, we place the di-points in X in the following

way.

d1 points with coordinates (1, s − 1, 1), . . . , (d1, s− 1, 1),
d2 points with coordinates (1, s − 2, 1), . . . , (d2, s− 2, 1),

...
ds−1 points with coordinates (1, 1, 1), . . . , (ds−1, 1, 1),
ds points with coordinates (1, 0, 1), . . . , (ds, 0, 1).

A k-configuration of points in P
2 constructed as above will be called a standard

k-configuration in P
2.

Before we prove our main theorem, we introduce a result in [2], which we shall

often use in this section. Let Z = Z0 be a fat point subscheme of P2. Choose a

sequence of lines L1, . . . ,Lr and define Zi to be the residual of Zi−1 with respect

to the line Li. Define the associated reduction vector v = (v1, . . . , vr) by taking

vi = deg(Li ∩ Zi−1). In particular, vi is the sum of multiplicities of the points in

Li ∩ Zi−1. Given v = (v1, . . . , vr), we define two functions

(2.1) fv(t) =
∑r−1

i=0 min(t− i+ 1, vi+1), and

(2.2) Fv(t) = min0≤i≤r

((t+2
2

)

−
(t−i+2

2

)

+
∑r

j=i+1 vj
)

.

Theorem 2.2 ([2, Theorem 1.1]). Let Z = Z0 be a fat point scheme in P
2 with

reduction vector v = (v1, . . . , vr) such that Zr+1 = ∅. Then the Hilbert function

HZ(t) of Z is bounded by fv(t) ≤ HZ(t) ≤ Fv(t).

Example 2.3. Consider a standard k-configuration X in P
2 of type (1, 2, 3, 4, 5, 6, 7)

with m = 3 (see Figure 1).
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L1

L8

L7L2 L3 L4 L5 L6

Figure 1. a standard k-configuration of type (1, 2, 3, 4, 5, 6, 7)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 − i+ 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

vi+1 21 20 19 16 13 10 7 4 12 10 8 6 4 2 1 5 4 3 2 1

L7 L8 L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6 L7 L1 L2 L3 L4 L5

By Theorem 2.2, one can see that

fv(19) =
∑19

i=0min(19− i+ 1, vi+1)

=
[
∑19

i=0 vi+1

]

− 3 = deg(3X)− 3.

Moreover, if we take i = 3, then

Fv(19) ≤
(19+2

2

)

−
(19−3+2

2

)

+
∑20

j=4 vj
= deg(3X)− 3,

and so

H3X(19) = deg(3X)− 3.

Moreover, since reg(3X) = 3 · 7 = 21, we get that

H3X(20) = deg(3X).

Thus

∆H3X(20) = 3,

which is the number of lines containing exactly 7-points in X.

Using the same idea as in Example 2.3, we can obtain the following theorem.

Indeed, in [4], the following theorem was mentioned without any proof (see [4, Re-

mark 4.8]), so we attempt a precise proof and calculation with a visualization of

construction here.

Theorem 2.4. Let X be a standard k-configuration in P
2 of type (1, 2, 3, . . . , s) with

s ≥ 2. Then

∆HmX(ms− 1) = 3,

which is the number of lines containing exactly s-points in X for m ≥ 2.
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L1 L2 L3 Ls−2 Ls−1 Ls

Ls+1

Figure 2. a standard k-configuration in P
2 of type (1, 2, . . . , s)

Proof. We define the lines as follows (see Figure 2).

• For 1 ≤ i ≤ s− 1, Li is a vertical line containing (s − i+ 1)-points.

• Ls is a diagonal line containing s-points.

• Ls+1 is a bottom horizontal line containing s-points.

We now describe how to construct the components of a reduction vector v.

(1) For 1 ≤ i ≤ s+ 1,

v1 = ms = the number of points on a line Ls,

v2 = ms− 1 = the number of points on a line Ls+1,

v3 = m(s− 2) + (m− 1) · 2 = the number of points on a line L1,

v4 = m(s− 3) + (m− 1) · 2 = the number of points on a line L2,

...
...

vi+2 = m(s− i− 1) + (m− 1) · 2 = the number of points on a line Li,

...
...

vs = m · 1 + (m− 1) · 2 = the number of points on a line Ls−2,

vs+1 = (m− 1) · 2 = the number of points on a line Ls−1.

(2) If 0 ≤ i ≤ 2, then

min(ms− i− 1, vi+1) = ms− i− 1.
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(3) If 3 ≤ i ≤ s, then

(ms− i− 1) − vi+1 = (ms− i− 1)−
[

m(s− i)− (m− 1) · 2
]

= (m− 1)i+ 2m− 3 > 0.

So

min(ms− i− 1, vi+1) = vi+1,

for such i.

(1) For ℓs+2 ≤ i+1 = ℓs+j+1 ≤ ℓs+s+1 with 1 ≤ ℓ ≤ m−2, and 1 ≤ j ≤ s,

vℓs+2 = (m− ℓ)(s− 2) + (m− ℓ− 1) · 2 = the number of points on a line L1,

vℓs+3 = (m− ℓ)(s− 3) + (m− ℓ− 1) · 2 = the number of points on a line L2,

vℓs+4 = (m− ℓ)(s− 4) + (m− ℓ− 1) · 2 = the number of points on a line L3,

vℓs+5 = (m− ℓ)(s− 5) + (m− ℓ− 1) · 2 = the number of points on a line L4,

...
...

vℓs+j+1(m− ℓ)(s − j − 1) + (m− ℓ− 1) · 2 = the number of points on a line Lj,

...
...

v(ℓ+1)s−1 = (m− ℓ) · 1 + (m− ℓ− 1) · 2 = the number of points on a line Ls−2,

v(ℓ+1)s = (m− ℓ− 1) · 2 = the number of points on a line Ls−1,

v(ℓ+1)s+1 = (m− ℓ− 1) · 1 = the number of points on a line Ls.

So, for 1 ≤ j ≤ s− 1,

(ms− i− 1)− vi+1 = (ms− (ℓs+ j)− 1)−
[

(m− ℓ)(s− j − 1)

+ (m− ℓ− 1) · 2
]

= (m− ℓ− 1)(j − 1) ≥ 0,

and for j = s, i.e., i = ℓs+ s

(ms− (ℓs+ s)− 1)− vℓ(s+1)+1 = (ms− (ℓs+ s)− 1)− (m− ℓ− 1) · 1
= (s− 1)(m− ℓ)− s
≥ 2(s− 1)− s, (since m− ℓ ≥ 2)
≥ 0.

Therefore,

min(ms− i− 1, vi+1) = vi+1,

for such i.
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(2) For (m− 1)s + 2 ≤ i+ 1 = (m− 1)s + j + 1 ≤ ms− 1 with 1 ≤ j ≤ s− 2,

v(m−1)s+2 = 1 · (s − 2) = the number of points on a line L1,
v(m−1)s+3 = 1 · (s − 3) = the number of points on a line L2,

...
...

v(m−1)s+j+1 = 1 · (s − j − 1) = the number of points on a line Lj,
...

...
v(m−1)s−1 = 1 · 1 = the number of points on a line Ls−2.

So

(ms− i− 1)− vi+1 = (ms− ((m− 1)s + j)− 1)− (s− j − 1)
= 0.

Thus,

min(ms− i− 1, vi+1) = vi+1,

for such i.

Moreover, one can easily show that

min(ms− i, vi+1) = vi+1, for every i ≥ 0.

We now calculate the total sum of components of the reduction vector.

(2ms− 1) +
m−1
∑

ℓ=1

s−1
∑

i=1

[

(m− ℓ+ 1)(s − i− 1) + (m− ℓ) · 2
]

+
(s− 1)(s − 2)

2
+

(m− 1)(m− 2)

2

=
m(m+ 1)

2
·
s(s+ 1)

2

= deg(mX).

By Theorem 2.2, one can obtain

fv(ms− 2) = Fv(ms− 2) = HmX(ms− 2) = deg(mX)− 3, and,
fv(ms− 1) = Fv(ms− 1) = HmX(ms− 2) = deg(mX).

Thus, we have

∆HmX(ms− 1) = 3,

as we wished. �

Remark 2.5. In the proof of Theorem 2.4, we precisely calculate the two total sums

of components of the reduction vectors, and show that those two numbers exactly

match to ∆HmX(mX − 2) and ∆HmX(mX − 1), respectively. However, in [4], the

authors do not mention the total sum of components of the reduction vectors for

the proofs of their theorems.
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It is known that if either X is a standard k-configuration in P
2 or s = 2, then

∆HmX(ms− 1) = the number of lines containing exactly s-points in X.

(see Theorem 2.4). So the following question is still open in general.

Question 2.6. Let X be a k-configuration in P
2 of type (1, 2, . . . , s) with s ≥ 2. Is

it true that

∆HmX(ms− 1) = the number of lines containing exactly s-points in X for m ≥ 2?
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