A SYMBOLIC POWER OF THE IDEAL OF A STANDARD \mathbb{k}-CONFIGURATION IN \mathbb{P}^{2}

Yong-Su Shin

Abstract

In [4], the authors show that if \mathbb{X} is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $\left(d_{1}, \ldots, d_{s}\right)$ with $d_{s}>s \geq 2$, then $\Delta \mathbf{H}_{m \mathbb{X}}\left(m d_{s}-1\right)$ is the number of lines containing exactly d_{s}-points of \mathbb{X} for $m \geq 2$. They also show that if \mathbb{X} is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2, \ldots, s)$ with $s \geq 2$, then $\Delta \mathbf{H}_{m \mathbb{X}}(m \mathbb{X}-1)$ is the number of lines containing exactly s-points in \mathbb{X} for $m \geq s+1$. In this paper, we explore a standard \mathbb{k}-configuration in \mathbb{P}^{2} and find that if \mathbb{X} is a standard \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2, \ldots, s)$ with $s \geq 2$, then $\Delta \mathbf{H}_{m \mathbb{X}}(m \mathbb{X}-1)=3$, which is the number of lines containing exactly s-points in \mathbb{X} for $m \geq 2$ instead of $m \geq s+1$.

1. Introduction

Let $\mathbb{X}=\left\{\wp_{1}, \ldots, \wp_{s}\right\}$ be a set of distinct points in \mathbb{P}^{n}. If $I_{\wp_{i}}$ is the ideal associated to \wp_{i} in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, where \mathbb{k} is an infinite field of any characteristic, then the homogeneous ideal associated to \mathbb{X} is the ideal $I_{\mathbb{X}}=I_{\wp_{1}} \cap \cdots \cap I_{\wp_{s}}$. Given s positive integers m_{1}, \ldots, m_{s} (not necessarily distinct), the subscheme in \mathbb{P}^{n} defined by the ideal $I_{\mathbb{Z}}=I_{\wp_{1}}^{m_{1}} \cap \cdots \cap I_{\wp_{s}}^{m_{s}}$ is called a set of fat points. We say that m_{i} is the multiplicity of the point \wp_{i}. If $m_{1}=\cdots=m_{s}=m$, then \mathbb{Z} is a homogeneous set of fat points of multiplicity m, which we are interested in this article. In this case, we write $m \mathbb{X}$ for \mathbb{Z}, and $I_{m \mathbb{X}}$ for $I_{\mathbb{Z}}$. It is well known that $I_{m \mathbb{X}}=I_{\mathbb{X}}^{(m)}$, the m-th symbolic power of the ideal $I_{\mathbb{X}}$ (see $[1,2,3,4]$).

Let I be a homogeneous ideal of R. The Hilbert function of R / I, denoted $\mathbf{H}_{R / I}$, is the numerical function $\mathbf{H}_{R / I}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ defined by

$$
\mathbf{H}_{R / I}(i):=\operatorname{dim}_{\mathbb{k}} R_{i}-\operatorname{dim}_{\mathbb{k}} I_{i} \quad \text { for } \quad i \geq 0
$$

[^0]where R_{i}, respectively I_{i}, denotes the i-th graded component of R, respectively I. If $I=I_{\mathbb{X}}$ is a defining ideal of a subscheme \mathbb{X} of \mathbb{P}^{n}, then we denote the Hilbert function $\mathbf{H}_{R / I_{\mathbb{X}}}$ by $\mathbf{H}_{\mathbb{X}}$.

In [9], Roberts and Roitman introduced special configurations of points in \mathbb{P}^{2}, which they named \mathbb{k}-confi- gurations. In the late 1990's, this definition was extended to \mathbb{P}^{n} by Geramita, Harima, and Shin (see [7, 8]). In [7], the authors prove that there is a one to one correspondence between \mathbb{k}-configurations in \mathbb{P}^{n} and 0 -dimensional differentiable O-sequences, i.e., Hilbert functions of sets of points in \mathbb{P}^{n}. They also find a graded minimal free resolution of a \mathbb{k}-configuration in \mathbb{P}^{n}, and so the Hilbert function of a \mathbb{k}-configuration in \mathbb{P}^{n}. Interestingly, a graded minimal free resolution or the Hilbert function of a \mathbb{k}-configuration in \mathbb{P}^{n} depends upon only the type (see [8, Corollary 3.7]). However, \mathbb{k}-configurations of the same type can have different geometric properties. In other words, with notation as in Definition 2.1 we cannot distinguish how many lines among the s-lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{s}$ can contain exactly $d_{s^{-}}$ points in \mathbb{X}. In [4], the authors show the following theorem.

Theorem 1.1 ([4, Theorems 3.1 and 4.7$])$. Let $\mathbb{X} \subseteq \mathbb{P}^{2}$ be $a \mathbb{k}$-configuration of type $d=\left(d_{1}, \ldots, d_{s}\right) \neq(1)$. Then there exists an integer m_{0} such that for all $m \geq m_{0}$,
$\Delta \mathbf{H}_{m \mathbb{X}}\left(m d_{s}-1\right)=$ number of lines containing exactly d_{s} points of \mathbb{X},
where $\Delta \mathbf{H}_{m \mathbb{X}}(-)$ is the first difference function of the Hilbert function of fat points of multiplicity m supported on \mathbb{X}. Furthermore, if $d_{s}>s$, then $m_{0}=2$, and if $d_{s}=s$, then $m_{0}=s+1$.

Indeed, we don't doubt that the above theorem holds for $m_{0}=2$ instead of $m_{0}=s+1$ even when $d_{s}=s$. In this article, we prove that this holds for $m \geq 2$ if a \mathbb{k}-configuration in \mathbb{P}^{2} is standard.

2. A Symbolic Power of The Ideal of A Standard \mathbb{k}-configuration in \mathbb{P}^{2}

We recall the definition of a \mathbb{k}-configuration in \mathbb{P}^{2}.
Definition 2.1 ($[7,8,9])$. A \mathbb{k}-configuration of points in \mathbb{P}^{2} is a finite set \mathbb{X} of points in \mathbb{P}^{2} which satisfies the following conditions: there exist integers $1 \leqslant d_{1}<\cdots<d_{s}$, subsets $\mathbb{X}_{1}, \ldots, \mathbb{X}_{s}$ of \mathbb{X}, and distinct lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{s} \subseteq \mathbb{P}^{2}$ such that:
(1) $\mathbb{X}=\bigcup_{i=1}^{s} \mathbb{X}_{i}$;
(2) $\left|\mathbb{X}_{i}\right|=d_{i}$ and $\mathbb{X}_{i} \subseteq \mathbb{L}_{i}$ for each $i=1, \ldots, s$, and;
(3) $\mathbb{L}_{i}(1<i \leqslant s)$ does not contain any points of \mathbb{X}_{j} for all $1 \leq j<i$.

In this case, the \mathbb{k}-configuration is said to be of type $\left(d_{1}, \ldots, d_{s}\right)$.
Let $\left(d_{1}, \ldots, d_{s}\right)$ be the parameters of a \mathbb{k}-configuration \mathbb{X} in \mathbb{P}^{2}. We shall construct a set of points which realizes these parameters and which are located in the following lines.

$$
\mathbb{L}_{1}: x_{1}=0 ; \mathbb{L}_{2}: x_{1}=1 ; \cdots ; \mathbb{L}_{s}: x_{1}=s-1
$$

(Note that this is a family of lines parallel to the x_{0}-axis.) In each of these lines we shall place points as follows: in a line \mathbb{L}_{i}, we place the d_{i}-points in \mathbb{X} in the following way.

$$
\begin{array}{rll}
d_{1} & \text { points with coordinates } & (1, s-1,1), \ldots,\left(d_{1}, s-1,1\right), \\
d_{2} & \text { points with coordinates } & (1, s-2,1), \ldots,\left(d_{2}, s-2,1\right), \\
& \vdots \\
& \vdots \\
d_{s-1} & \text { points with coordinates } & (1,1,1), \ldots,\left(d_{s-1}, 1,1\right), \\
d_{s} & \text { points with coordinates } & (1,0,1), \ldots,\left(d_{s}, 0,1\right) .
\end{array}
$$

A \mathbb{k}-configuration of points in \mathbb{P}^{2} constructed as above will be called a standard \mathbb{k}-configuration in \mathbb{P}^{2}.

Before we prove our main theorem, we introduce a result in [2], which we shall often use in this section. Let $\mathbb{Z}=\mathbb{Z}_{0}$ be a fat point subscheme of \mathbb{P}^{2}. Choose a sequence of lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{r}$ and define \mathbb{Z}_{i} to be the residual of \mathbb{Z}_{i-1} with respect to the line \mathbb{L}_{i}. Define the associated reduction vector $\mathbf{v}=\left(v_{1}, \ldots, v_{r}\right)$ by taking $v_{i}=\operatorname{deg}\left(\mathbb{L}_{i} \cap \mathbb{Z}_{i-1}\right)$. In particular, v_{i} is the sum of multiplicities of the points in $\mathbb{L}_{i} \cap \mathbb{Z}_{i-1}$. Given $\mathbf{v}=\left(v_{1}, \ldots, v_{r}\right)$, we define two functions

$$
\begin{equation*}
F_{\mathbf{v}}(t)=\min _{0 \leq i \leq r}\left(\binom{t+2}{2}-\binom{t-i+2}{2}+\sum_{j=i+1}^{r} v_{j}\right) . \tag{2.2}
\end{equation*}
$$

Theorem 2.2 ([2, Theorem 1.1]). Let $\mathbb{Z}=\mathbb{Z}_{0}$ be a fat point scheme in \mathbb{P}^{2} with reduction vector $\mathbf{v}=\left(v_{1}, \ldots, v_{r}\right)$ such that $\mathbb{Z}_{r+1}=\varnothing$. Then the Hilbert function $\mathbf{H}_{\mathbb{Z}}(t)$ of \mathbb{Z} is bounded by $f_{\mathbf{v}}(t) \leq \mathbf{H}_{\mathbb{Z}}(t) \leq F_{\mathbf{v}}(t)$.

Example 2.3. Consider a standard \mathbb{k}-configuration \mathbb{X} in \mathbb{P}^{2} of type ($1,2,3,4,5,6,7$) with $m=3$ (see Figure 1).

Figure 1. a standard \mathbb{k}-configuration of type $(1,2,3,4,5,6,7)$

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$19-i+1$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
v_{i+1}	21	20	19	$\mathbf{1 6}$	$\mathbf{1 3}$	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{1 2}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
	\mathbb{L}_{7}	\mathbb{L}_{8}	\mathbb{L}_{1}	\mathbb{L}_{2}	\mathbb{L}_{3}	\mathbb{L}_{4}	\mathbb{L}_{5}	\mathbb{L}_{6}	\mathbb{L}_{1}	\mathbb{L}_{2}	\mathbb{L}_{3}	\mathbb{L}_{4}	\mathbb{L}_{5}	\mathbb{L}_{6}	\mathbb{L}_{7}	\mathbb{L}_{1}	\mathbb{L}_{2}	\mathbb{L}_{3}	\mathbb{L}_{4}	\mathbb{L}_{5}

By Theorem 2.2, one can see that

$$
\begin{aligned}
f_{\mathbf{v}}(19) & =\sum_{i=0}^{19} \min \left(19-i+1, v_{i+1}\right) \\
& =\left[\sum_{i=0}^{19} v_{i+1}\right]-3=\operatorname{deg}(3 \mathbb{X})-3
\end{aligned}
$$

Moreover, if we take $i=3$, then

$$
\begin{aligned}
F_{\mathbf{v}}(19) & \leq\binom{ 19+2}{2}-\binom{19-3+2}{2}+\sum_{j=4}^{20} v_{j} \\
& =\operatorname{deg}(3 \mathbb{X})-3,
\end{aligned}
$$

and so

$$
\mathbf{H}_{3 \mathbb{X}}(19)=\operatorname{deg}(3 \mathbb{X})-3
$$

Moreover, since $\operatorname{reg}(3 \mathbb{X})=3 \cdot 7=21$, we get that

$$
\mathbf{H}_{3 \mathbb{X}}(20)=\operatorname{deg}(3 \mathbb{X})
$$

Thus

$$
\Delta \mathbf{H}_{3 \mathbb{X}}(20)=3
$$

which is the number of lines containing exactly 7 -points in \mathbb{X}.
Using the same idea as in Example 2.3, we can obtain the following theorem. Indeed, in [4], the following theorem was mentioned without any proof (see [4, Remark 4.8]), so we attempt a precise proof and calculation with a visualization of construction here.

Theorem 2.4. Let \mathbb{X} be a standard \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2,3, \ldots, s)$ with $s \geq 2$. Then

$$
\Delta \mathbf{H}_{m \mathbb{X}}(m s-1)=3
$$

which is the number of lines containing exactly s-points in \mathbb{X} for $m \geq 2$.

Figure 2. a standard \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2, \ldots, s)$
Proof. We define the lines as follows (see Figure 2).

- For $1 \leq i \leq s-1, \mathbb{L}_{i}$ is a vertical line containing $(s-i+1)$-points.
- \mathbb{L}_{s} is a diagonal line containing s-points.
- \mathbb{L}_{s+1} is a bottom horizontal line containing s-points.

We now describe how to construct the components of a reduction vector \mathbf{v}.
(1) For $1 \leq i \leq s+1$,
$v_{1}=m s=$ the number of points on a line \mathbb{L}_{s},
$v_{2}=m s-1=$ the number of points on a line \mathbb{L}_{s+1},
$v_{3}=m(s-2)+(m-1) \cdot 2=$ the number of points on a line \mathbb{L}_{1},
$v_{4}=m(s-3)+(m-1) \cdot 2=$ the number of points on a line \mathbb{L}_{2},
$v_{i+2}=m(s-i-1)+(m-1) \cdot 2=$ the number of points on a line \mathbb{L}_{i},
$\vdots \quad \vdots$
$v_{s}=m \cdot 1+(m-1) \cdot 2=$ the number of points on a line \mathbb{L}_{s-2},
$v_{s+1}=(m-1) \cdot 2=$ the number of points on a line \mathbb{L}_{s-1}.
(2) If $0 \leq i \leq 2$, then

$$
\min \left(m s-i-1, v_{i+1}\right)=m s-i-1 .
$$

(3) If $3 \leq i \leq s$, then

$$
\begin{aligned}
(m s-i-1)-v_{i+1} & =(m s-i-1)-[m(s-i)-(m-1) \cdot 2] \\
& =(m-1) i+2 m-3>0
\end{aligned}
$$

So

$$
\min \left(m s-i-1, v_{i+1}\right)=v_{i+1}
$$

for such i.
(1) For $\ell s+2 \leq i+1=\ell s+j+1 \leq \ell s+s+1$ with $1 \leq \ell \leq m-2$, and $1 \leq j \leq s$, $v_{\ell s+2}=(m-\ell)(s-2)+(m-\ell-1) \cdot 2=$ the number of points on a line \mathbb{L}_{1}, $v_{\ell s+3}=(m-\ell)(s-3)+(m-\ell-1) \cdot 2=$ the number of points on a line \mathbb{L}_{2}, $v_{\ell s+4}=(m-\ell)(s-4)+(m-\ell-1) \cdot 2=$ the number of points on a line \mathbb{L}_{3}, $v_{\ell s+5}=(m-\ell)(s-5)+(m-\ell-1) \cdot 2=$ the number of points on a line \mathbb{L}_{4},

$$
\vdots \quad \vdots
$$

$v_{\ell s+j+1}(m-\ell)(s-j-1)+(m-\ell-1) \cdot 2=$ the number of points on a line \mathbb{L}_{j},
$v_{(\ell+1) s-1}=(m-\ell) \cdot 1+(m-\ell-1) \cdot 2=$ the number of points on a line \mathbb{L}_{s-2},
$v_{(\ell+1) s}=(m-\ell-1) \cdot 2=$ the number of points on a line \mathbb{L}_{s-1},
$v_{(\ell+1) s+1}=(m-\ell-1) \cdot 1=$ the number of points on a line \mathbb{L}_{s}.
So, for $1 \leq j \leq s-1$,

$$
\begin{aligned}
(m s-i-1)-v_{i+1}= & (m s-(\ell s+j)-1)-[(m-\ell)(s-j-1) \\
& +(m-\ell-1) \cdot 2] \\
= & (m-\ell-1)(j-1) \geq 0,
\end{aligned}
$$

and for $j=s$, i.e., $i=\ell s+s$

$$
\begin{aligned}
(m s-(\ell s+s)-1)-v_{\ell(s+1)+1} & =(m s-(\ell s+s)-1)-(m-\ell-1) \cdot 1 \\
& =(s-1)(m-\ell)-s \\
& \geq 2(s-1)-s, \quad \text { (since } m-\ell \geq 2) \\
& \geq 0
\end{aligned}
$$

Therefore,

$$
\min \left(m s-i-1, v_{i+1}\right)=v_{i+1}
$$

for such i.
(2) For $(m-1) s+2 \leq i+1=(m-1) s+j+1 \leq m s-1$ with $1 \leq j \leq s-2$,

$$
\begin{aligned}
& v_{(m-1) s+2}=1 \cdot(s-2)=\text { the number of points on a line } \mathbb{L}_{1} \text {, } \\
& v_{(m-1) s+3}=1 \cdot(s-3) \quad=\text { the number of points on a line } \mathbb{L}_{2}, \\
& \vdots \quad \vdots \\
& v_{(m-1) s+j+1}=1 \cdot(s-j-1)=\text { the number of points on a line } \mathbb{L}_{j}, \\
& v_{(m-1) s-1}=1 \cdot 1 \quad=\quad \text { the number of points on a line } \mathbb{L}_{s-2} . \\
& \text { So } \\
& (m s-i-1)-v_{i+1}=(m s-((m-1) s+j)-1)-(s-j-1) \\
& =0 \text {. }
\end{aligned}
$$

Thus,

$$
\min \left(m s-i-1, v_{i+1}\right)=v_{i+1}
$$

for such i.
Moreover, one can easily show that

$$
\min \left(m s-i, v_{i+1}\right)=v_{i+1}, \quad \text { for every } i \geq 0
$$

We now calculate the total sum of components of the reduction vector.

$$
\begin{aligned}
& (2 m s-1)+\sum_{\ell=1}^{m-1} \sum_{i=1}^{s-1}[(m-\ell+1)(s-i-1)+(m-\ell) \cdot 2] \\
& +\frac{(s-1)(s-2)}{2}+\frac{(m-1)(m-2)}{2} \\
= & \frac{m(m+1)}{2} \cdot \frac{s(s+1)}{2} \\
= & \operatorname{deg}(m \mathbb{X})
\end{aligned}
$$

By Theorem 2.2, one can obtain

$$
\begin{aligned}
f_{\mathbf{v}}(m s-2) & =F_{\mathbf{v}}(m s-2) \\
f_{\mathbf{v}}(m s-1) & =\mathbf{H}_{m \mathbb{X}}(m s-2)=\operatorname{deg}(m \mathbb{X})-3, \quad \text { and }, \\
\mathbf{v}(m s-1) & =\mathbf{H}_{m \mathbb{X}}(m s-2)=\operatorname{deg}(m \mathbb{X})
\end{aligned}
$$

Thus, we have

$$
\Delta \mathbf{H}_{m \mathbb{X}}(m s-1)=3,
$$

as we wished.
Remark 2.5. In the proof of Theorem 2.4, we precisely calculate the two total sums of components of the reduction vectors, and show that those two numbers exactly match to $\Delta \mathbf{H}_{m \mathbb{X}}(m \mathbb{X}-2)$ and $\Delta \mathbf{H}_{m \mathbb{X}}(m \mathbb{X}-1)$, respectively. However, in [4], the authors do not mention the total sum of components of the reduction vectors for the proofs of their theorems.

It is known that if either \mathbb{X} is a standard \mathbb{k}-configuration in \mathbb{P}^{2} or $s=2$, then
$\Delta \mathbf{H}_{m \mathbb{X}}(m s-1)=$ the number of lines containing exactly s-points in \mathbb{X}.
(see Theorem 2.4). So the following question is still open in general.
Question 2.6. Let \mathbb{X} be a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2, \ldots, s)$ with $s \geq 2$. Is it true that
$\Delta \mathbf{H}_{m \mathbb{X}}(m s-1)=$ the number of lines containing exactly s-points in \mathbb{X} for $m \geq 2 ?$

REfERENCES

1. C. Bocci \& B. Harbourne: Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19 (2010), no. 3, 399-417.
2. S. Cooper, B. Harbourne \& Z. Teitler: Combinatorial bounds on Hilbert functions of fat points in projective space. J. Pure Appl. Algebra 215 (2011), 2165-2179.
3. F. Galetto, Anthony V. Geramita, Y.S. Shin \& A. Van Tuyl: The Symbolic Defect of an Ideal. In preparation.
4. F. Galetto, Y.S. Shin \& A. Van Tuyl: Distinguishing \mathbb{k}-configurations. In preparation.
5. A.V. Geramita, B. Harbourne \& J.C. Migliore: Star Configurations in \mathbb{P}^{n}. J. Algebra 376 (2013), 279-299.
6. A.V. Geramita, B. Harbourne, J.C. Migliore \& U. Nagel: Matroid Configurations and Symbolic Powers of Their Ideals. In preparation.
7. A.V. Geramita, T. Harima \& Y.S. Shin: An Alternative to the Hilbert function for the ideal of a finite set of points in \mathbb{P}^{n}. Illinois J. of Mathematics. 45 (2001), no. 1, 1-23.
8. A.V. Geramita, T. Harima \& Y.S. Shin: Extremal point sets and Gorenstein ideals. Adv. Math. 152 (2000), 78-119.
9. L.G. Roberts \& M. Roitman: On Hilbert functions of reduced and of integral algebras. J. Pure Appl. Algebra 56 (1989), 85-104.

Department of Mathematics, Sungshin Women's University, Seoul 02844, Korea
Email address: ysshin@sungshin.ac.kr

[^0]: Received by the editors December 06, 2017. Accepted February 21, 2018
 2010 Mathematics Subject Classification. 13A17, 14M05.
 Key words and phrases. symbolic powers, regular powers, points, star configurations.
 This research was supported by a grant from Sungshin Women's University.

