DOI QR코드

DOI QR Code

AN ELEMENTARY PROOF OF THE EFFECT OF 3-MOVE ON THE JONES POLYNOMIAL

  • Cho, Seobum (College of Medicine, Yonsei University) ;
  • Kim, Soojeong (University College, Yonsei University International Campus)
  • Received : 2017.04.14
  • Accepted : 2018.03.07
  • Published : 2018.05.31

Abstract

A mathematical knot is an embedded circle in ${\mathbb{R}}^3$. A fundamental problem in knot theory is classifying knots up to its numbers of crossing points. Knots are often distinguished by using a knot invariant, a quantity which is the same for equivalent knots. Knot polynomials are one of well known knot invariants. In 2006, J. Przytycki showed the effects of a n - move (a local change in a knot diagram) on several knot polynomials. In this paper, the authors review about knot polynomials, especially Jones polynomial, and give an alternative proof to a part of the Przytychi's result for the case n = 3 on the Jones polynomial.

Keywords

References

  1. C.C. Adams: The Knot Book. AMS, Providence, Rhode Island, 2004.
  2. J.H. Conway: An enumeration of knots and links and some of their related properties. Computational Problems in Abstract Algebra (John Leech, ed.), Pergamon Press, Oxford and New York, 1969.
  3. P.R. Cromwell: Knots and Links. Cambridge university press, New York, 2004.
  4. I. Darcy: Biological distances on DNA knots and links: Applications to Xer recombination. Journal of Knot Theory and its Ramifications 10 (2001), 269-294. https://doi.org/10.1142/S0218216501000846
  5. I. K. Darcy, A. Bhutra, J. Chang, N. Druivenga, C. McKinney, R. K. Medikonduri, S. Mills, J. Navarra Madsen, A. Ponnusamy, J. Sweet & T. Thompson: Coloring the Mu transpososome. BMC Bioinformatics 7:Art. No. 435 (2006).
  6. I.K. Darcy, J. Luecke & M. Vazquez: Tangle analysis of difference topology experiments: Applications to a Mu protein-dna complex. Algebraic and Geometric Topology 9 (2009), 2247-2309. https://doi.org/10.2140/agt.2009.9.2247
  7. I.K. Darcy & R.G. Scharein: TopoICE-R: 3D visualization modeling the topology of DNA recombination. Bioinformatics 22 (2006), no. 14, 1790-1791. https://doi.org/10.1093/bioinformatics/btl164
  8. F.B. Dean, A. Stasiak, T. Koller & N.R. Cozzarelli: Duplex DNA knots produced by Escherichia Coli topoisomerase I. J. Biol. Chem. 260 (1985), 4795-4983.
  9. C. Ernst & D.W. Sumners: A calculus for rational tangles: applications to DNA recombination. Math. Proc. Camb. Phil. Soc. 108 (1990), 489-515. https://doi.org/10.1017/S0305004100069383
  10. C. Ernst & D.W. Sumners : Solving tangle equations arising in a DNA recombination model. Math. Proc. Camb. Phil. Soc. 126 (1990), 23-36.
  11. R. Harshey & M. Jayaram: The Mu transpososome through a topological lens. Crit. Rev. Biochem. Mol. Biol. 41 (2006), no. 6, 387-405. https://doi.org/10.1080/10409230600946015
  12. V.F.R. Jones: A polynomial invariant for knots via von Newmann algebras. Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 10-111
  13. S. Kim: A generalized 4-string solution tangle of DNA-protein complexes. J. KSIAM 15 (2011), no. 3, 161-175.
  14. S. Kim: Topological analysis of Mu-transposition. J. KSIAM 17 (2013), no. 2, 87-102.
  15. S. Kim & I.K. Darcy: Topological analysis of DNA-protein complexes. Mathematics of DNA Structure, Function, and Interactions, IMA volume 150 (2009), 177-194.
  16. S. Kim & I.K. Darcy: A 4-string tangle analysis of DNA-protein complexes based on difference topology. Journal of knot theory and its ramifications 24 (2015), no. 11, 1550056. https://doi.org/10.1142/S021821651550056X
  17. S. Pathania, M. Jayaram, & R.M. Harshey: Path of DNA within the Mu transposo- some. transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Cell 109 (2002), no. 4, 425-436. https://doi.org/10.1016/S0092-8674(02)00728-6
  18. J.H. Przytycki: $t_k$-moves on links. In Braids, ed. J.S.Birman and A.Libgober, Contemporary Math 78 (1998), 615-656.
  19. K. Reidemeister: Elementare Begrndung der Knotentheorie. Abh. Math. Sem. Univ. Hamburg 5 (1927), no. 1, 24-32. https://doi.org/10.1007/BF02952507
  20. D. Rolfsen: Knots And Links. AMS Chelsea Publishing, Providence, Rhode Island, 1976.