DOI QR코드

DOI QR Code

A study on understanding of differentiation

미분의 이해에 대한 연구

  • Oh, Hye-Young (Department of Mathematics Education, Incheon National University)
  • Received : 2017.10.21
  • Accepted : 2018.03.28
  • Published : 2018.05.15

Abstract

Differentiation with integration is an important subject which is widely applied in mathematics, natural science, and engineering. Derivative is an important concept of differentiation. But students don't understand its concept well and concentrate on acquiring only the skill to solve the standardized calculus problem. So they are poor at understanding of the concept of differentiation. In this study, after making a survey of differentiation on college students, we try to analyze errors which appeared in solving differentiation problem and investigate mathematics process of limiting process inherent in the derivative and historical development about derivative. Thus, we try to analyze the understanding of differentiation and present the results about this.

미분학은 적분학과 더불어 수학, 자연과학, 공학 등에서 널리 응용되는 중요한 분야이다. 도함수는 미분학의 중요 개념인데, 학생들은 이것의 개념을 제대로 파악하지 않은 채 정형화된 계산 문제를 푸는 기능 습득에만 치중하고 있어 미분에 대한 개념적 이해는 매우 빈약한 상태이다. 이에 본 연구에서는 학부 학생들을 대상으로 미분에 대한 설문조사를 실시하여, 미분학 문제를 풀 때 나타난 오류를 분석하고 도함수에 내재한 극한과정의 수학화 과정과 도함수에 대한 역사적 발달과정을 살펴보고자 한다. 이 과정을 통해 미분의 이해도를 분석하고 이에 대한 결과를 제시하고자 한다.

Keywords

References

  1. 김정희 (2005). 고등학생들의 미분개념의 이해 및 오류유형 분석. 충북대학교 교육대학원 석사학위논문. Kim, J. (2005), An investigation on high school students' understanding and error type about differentiation concept, Master's thesis, Chungbuk University.
  2. 우정호 (1998). 학교 수학의 교육적 기초. 서울대학교 출판부. Woo, J. (1998), Educational Basis of School Mathematics, Seoul National University Publishing Co.
  3. 정연준 (2010). 미분계수의 역사적 발달 과정에 대한 고찰. 대한수학교육학회지 <학교수학>, 12(2). Joung, Youn Joon, An Investigation on the Historical Development of the Derivative Concept. Journal of Korea Society of Educational Studies in Mathematics, School Mathematics, 12(2), 239-257. Jun. 2010
  4. 조완영 (2006). 고등학교 미적분에서의 수학화 교수.학습에 관한 연구. 대한수학교육학회지 <학교수학>, 8(4). Cho, Wan Young. A Study on Mathematizing Teaching and Learning in Highschool Calculus. Journal of Korea Society of Educational Studies in Mathematics, School Mathematics, 8(4), 417-439. Dec. 2006
  5. 조완영 (2012). 예비교사의 미분영역에 관한 내용지식의 분석. 대학수학교육학회지 <학교수학>, 14(2). Cho. Wan-Young. Analysis of Prospective Teachers' Mathematical Content Knowledge about Differential area. Journal of Korea Society of Educational Studies in Mathematics, School Mathematics, 14(2), 233-253. June. 2012
  6. 허민.오혜영역. Howard Eves(1995). 수학의 위대한 순간들, 경문사. Howard Eves/ Her, M., Oh, H. Y.(1995). Great Moments in Mathematics. Kyungmoon Co.
  7. Donaldson, M.(1963). A Study of Children's Thinking. Tavistock Publications, London, pp. 183-185
  8. Hart, K.M.(1981). Children's Understanding of Mathematics. 11-16, John Murray, London.
  9. Judith V. Grabiner. The Changing Concept of Change: The Derivative from Fermat to Weierstrass VOL.56, NO.4, SEPTEMBER 1983, mathematics magazine.
  10. Markus Hahkioniemi. Associative and reflective connections between the limit of the difference quotient and limiting process. Journal of Mathematics Behavior 25 (2006) 170-184. https://doi.org/10.1016/j.jmathb.2006.02.002
  11. Orton, A.(1983). Students' understanding of differentiation, Educational Studies in Mathematics, 14(3), 235-250 https://doi.org/10.1007/BF00410540
  12. Stewart, J.(2008). Calculus. (6thed.).Belmont: Brooks Cole.
  13. Tall, D. & Vinner, S.(1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169 https://doi.org/10.1007/BF00305619
  14. Tall, D.(1991). The psychology of advanced mathematical thinking. In D. Tall(Ed.), Advanced mathematical thinking (pp.3-21). Dordrecht: Kluwer.
  15. Tall, D.(1992). The transition to advanced mathematical thinking: Functions, limits. infinity, and proof. In D. Grouws(Ed.). Handbook of research on mathematics teaching and learning (pp. 495-511). New York: Macmillan
  16. Zandieh, M.(2000). A theoretical framework for analyzing student understanding of the concept of derivative. Research in Collegiate Mathematics Education IV. 8, 103-126.