DOI QR코드

DOI QR Code

Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells

  • Lee, Junwon (Department of Physiology, Yonsei University College of Medicine) ;
  • Choi, Sang-Hwi (Department of Physiology, Yonsei University College of Medicine) ;
  • Lee, Dongjin R (Department of Physiology, Yonsei University College of Medicine) ;
  • Kim, Dae-Sung (Department of Biotechnology, Brain Korea 21 PLUS Project for Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Dong-Wook (Department of Physiology, Yonsei University College of Medicine)
  • Received : 2017.09.06
  • Accepted : 2017.11.17
  • Published : 2018.02.28

Abstract

The objective of this study was to induce the production of isthmic organizer (IsO)-like cells capable of secreting fibroblast growth factor (FGF) 8 and WNT1 from human embryonic stem cells (ESCs). The precise modulation of canonical Wnt signaling was achieved in the presence of the small molecule CHIR99021 ($0.6{\mu}M$) during the neural induction of human ESCs, resulting in the differentiation of these cells into IsO-like cells having a midbrain-hindbrain border (MHB) fate in a manner that recapitulated their developmental course in vivo. Resultant cells showed upregulated expression levels of FGF8 and WNT1. The addition of exogenous FGF8 further increased WNT1 expression by 2.6 fold. Gene ontology following microarray analysis confirmed that IsO-like cells enriched the expression of MHB-related genes by 40 fold compared to control cells. Lysates and conditioned media of IsO-like cells contained functional FGF8 and WNT1 proteins that could induce MHB-related genes in differentiating ESCs. The method for generating functional IsO-like cells described in this study could be used to study human central nervous system development and congenital malformations of the midbrain and hindbrain.

Keywords

References

  1. Barkovich, A.J., Millen, K.J., and Dobyns, W.B. (2009). A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132, 3199-3230. https://doi.org/10.1093/brain/awp247
  2. Basson, M.A., and Wingate, R.J. (2013). Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front. Neuroanat. 7, 29.
  3. Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165-1188. https://doi.org/10.1214/aos/1013699998
  4. Blaess, S., and Ang, S. (2015). Genetic control of midbrain dopaminergic neuron development. Wiley Interdisciplinary Reviews -Developmental Biology 4, 113-134. https://doi.org/10.1002/wdev.169
  5. Broccoli, V., Boncinelli, E., and Wurst, W. (1999). The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401, 164-168. https://doi.org/10.1038/43670
  6. Canning, C.A., Lee, L., Irving, C., Mason, I., and Jones, C.M. (2007). Sustained interactive Wnt and FGF signaling is required to maintain isthmic identity. Dev. Biol. 305, 276-286. https://doi.org/10.1016/j.ydbio.2007.02.009
  7. Ciani, L., and Salinas, P.C. (2005). WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat. Rev. Neurosci. 6, 351-362.
  8. Crossley, P.H., Martinez, S., and Martin, G.R. (1996). Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66-68. https://doi.org/10.1038/380066a0
  9. de Lau, W., Peng, W.C., Gros, P., and Clevers, H. (2014). The Rspondin/ Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 28, 305-316. https://doi.org/10.1101/gad.235473.113
  10. Irving, C., and Mason, I. (2000). Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127, 177-186.
  11. Kiecker, C., and Lumsden, A. (2005). Compartments and their boundaries in vertebrate brain development. Nat. Rev. Neurosci. 6, 553-564. https://doi.org/10.1038/nrn1702
  12. Kiecker, C., and Lumsden, A. (2012). The role of organizers in patterning the nervous system. Annu. Rev. Neurosci. 35, 347-367. https://doi.org/10.1146/annurev-neuro-062111-150543
  13. Kim, D.S., Lee, J.S., Leem, J.W., Huh, Y.J., Kim, J.Y., Kim, H.S., Park, I.H., Daley, G.Q., Hwang, D.Y., and Kim, D.W. (2010). Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. 6, 270-281. https://doi.org/10.1007/s12015-010-9138-1
  14. Kirkeby, A., Grealish, S., Wolf, D.A., Nelander, J., Wood, J., Lundblad, M., Lindvall, O., and Parmar, M. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703-714. https://doi.org/10.1016/j.celrep.2012.04.009
  15. Kiyasova, V., and Gaspar, P. (2011). Development of raphe serotonin neurons from specification to guidance. Eur. J. Neurosci. 34, 1553-1562. https://doi.org/10.1111/j.1460-9568.2011.07910.x
  16. Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013). Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379. https://doi.org/10.1038/nature12517
  17. Lupo, G., Bertacchi, M., Carucci, N., Augusti-Tocco, G., Biagioni, S., and Cremisi, F. (2014). From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell. Mol. Life Sci. 71, 2917-2930. https://doi.org/10.1007/s00018-014-1596-1
  18. Martinez, S., Crossley, P.H., Cobos, I., Rubenstein, J.L., and Martin, G.R. (1999). FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126, 1189-1200.
  19. McMahon, A.P., Joyner, A.L., Bradley, A., and McMahon, J.A. (1992). The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581-595. https://doi.org/10.1016/0092-8674(92)90222-X
  20. Millet, S., Campbell, K., Epstein, D.J., Losos, K., Harris, E., and Joyner, A.L. (1999). A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, 161-164. https://doi.org/10.1038/43664
  21. Naujok, O., Lentes, J., Diekmann, U., Davenport, C., and Lenzen, S. (2014). Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res. Notes 7, 273. https://doi.org/10.1186/1756-0500-7-273
  22. Nordstrom, U., Jessell, T.M., and Edlund, T. (2002). Progressive induction of caudal neural character by graded Wnt signaling. Nat. Neurosci. 5, 525-532. https://doi.org/10.1038/nn0602-854
  23. Olander, S., Nordstrom, U., Patthey, C., and Edlund, T. (2006). Convergent Wnt and FGF signaling at the gastrula stage induce the formation of the isthmic organizer. Mech. Dev. 123, 166-176. https://doi.org/10.1016/j.mod.2005.11.001
  24. Partanen, J. (2007). FGF signalling pathways in development of the midbrain and anterior hindbrain. J. Neurochem. 101, 1185-1193. https://doi.org/10.1111/j.1471-4159.2007.04463.x
  25. Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. https://doi.org/10.1093/nar/29.9.e45
  26. Rhinn, M., and Brand, M. (2001). The midbrain--hindbrain boundary organizer. Curr. Opin. Neurobiol. 11, 34-42. https://doi.org/10.1016/S0959-4388(00)00171-9
  27. Shimamura, K., and Rubenstein, J.L. (1997). Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709-2718.
  28. Simeone, A. (2000). Positioning the isthmic organizer where Otx2 and Gbx2meet. Trends Genet. 16, 237-240. https://doi.org/10.1016/S0168-9525(00)02000-X
  29. Stern, C.D. (2001). Initial patterning of the central nervous system: how many organizers? Nat. Rev. Neurosci. 2, 92-98. https://doi.org/10.1038/35053563
  30. Wurst, W., and Bally-Cuif, L. (2001). Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci. 2, 99-108. https://doi.org/10.1038/35053516