References
- Aird, K.M., Iwasaki, O., Kossenkov, A.V., Tanizawa, H., Fatkhutdinov, N., Bitler, B.G., Le, L., Alicea, G., Yang, T.L., Johnson, F.B., et al. (2016). HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 215, 325-334. https://doi.org/10.1083/jcb.201608026
- Bianchi, M.E., and Agresti, A. (2005). HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev. 15, 496-506. https://doi.org/10.1016/j.gde.2005.08.007
- Davalos, A.R., Coppe, J.P., Campisi, J., and Desprez, P.Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29, 273-283. https://doi.org/10.1007/s10555-010-9220-9
- Devgan, V., Mammucari, C., Millar, S.E., Brisken, C., and Dotto, G.P. (2005). p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev.19, 1485-1495. https://doi.org/10.1101/gad.341405
- Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
- Fagan, R., Flint, K.J., and Jones, N. (1994). Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Cell 78, 799-811. https://doi.org/10.1016/S0092-8674(94)90522-3
- Ferrandiz, N., Caraballo, J.M., Garcia-Gutierrez, L., Devgan, V., Rodriguez-Paredes, M., Lafita, M.C., Bretones, G., Quintanilla, A., Munoz-Alonso, M.J., Blanco, R., et al. (2012). p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PloS One 7, e37759. https://doi.org/10.1371/journal.pone.0037759
- Fischer, M., Quaas, M., Steiner, L., and Engeland, K. (2016). The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res. 44, 164-174. https://doi.org/10.1093/nar/gkv927
- Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., and Elledge, S.J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816. https://doi.org/10.1016/0092-8674(93)90499-G
- Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
- Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes Dev. 24, 2463-2479. https://doi.org/10.1101/gad.1971610
- Lagger, G., Doetzlhofer, A., Schuettengruber, B., Haidweger, E., Simboeck, E., Tischler, J., Chiocca, S., Suske, G., Rotheneder, H., Wintersberger, E., et al. (2003). The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclindependent kinase inhibitor p21/WAF1/CIP1 gene. Mol. Cell. Biol. 23, 2669-2679. https://doi.org/10.1128/MCB.23.8.2669-2679.2003
- Li, Y., Jenkins, C.W., Nichols, M.A., and Xiong, Y. (1994). Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9, 2261-2268.
- Livak, K.J., and Schmittgen, T.D.(2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
- Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
- Malarkey, C.S., and Churchill, M.E. (2012). The high mobility group box: the ultimate utility player of a cell. Trend. Biochem. Sci. 37, 553-562. https://doi.org/10.1016/j.tibs.2012.09.003
- Quaas, M., Muller, G.A., and Engeland, K. (2012). p53 can repress transcription of cell cycle genes through a p21(WAF1/CIP1)-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle 11, 4661-4672. https://doi.org/10.4161/cc.22917
- Shin, Y.J., Kim, M.S., Kim, M.S., Lee, J., Kang, M., and Jeong, J.H. (2013). High-mobility group box 2 (HMGB2) modulates radioresponse and is downregulated by p53 in colorectal cancer cell. Cancer Biol. Ther. 14, 213-221. https://doi.org/10.4161/cbt.23292
- Taniguchi, N., Carames, B., Ronfani, L., Ulmer, U., Komiya, S., Bianchi, M.E., and Lotz, M., (2009). Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc. Natl. Acad. Sci. USA 106, 1181-1186. https://doi.org/10.1073/pnas.0806062106
- Taniguchi, N., Kawakami, Y., Maruyama, I., and Lotz, M. (2017). HMGB proteins and arthritis. Hum. Cell 31, 1-9.
- Thomas, J.O. (2001). HMG1 and 2: architectural DNA-binding proteins. Biochem. Soc. Trans. 29(Pt 4), 395-401. https://doi.org/10.1042/bst0290395
- van Deursen, J.M. (2014). The role of senescent cells in ageing. Nature 509, 439-446. https://doi.org/10.1038/nature13193
- Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D. (1993). p21 is a universal inhibitor of cyclin kinases. Nature 366, 701-704. https://doi.org/10.1038/366701a0
Cited by
- The Role of the Cyclin Dependent Kinase Inhibitor p21cip1/waf1 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics vol.11, pp.10, 2019, https://doi.org/10.3390/cancers11101475
- Comparative analysis of the immune responses in cancer cells irradiated with X-ray, proton and carbon-ion beams vol.585, pp.None, 2018, https://doi.org/10.1016/j.bbrc.2021.11.004