DOI QR코드

DOI QR Code

A study on the estimation of underwater shipping noise using automatic identification system data

선박자동식별장치 데이터를 이용한 수중 선박소음 추정 연구

  • 박지성 (한국해양과학기술원 해양방위연구센터) ;
  • 강돈혁 (한국해양과학기술원 해양방위연구센터) ;
  • 김한수 (한국해양과학기술원 해양방위연구센터) ;
  • 김미라 (한국해양과학기술원 해양방위연구센터) ;
  • 조성호 (한국해양과학기술원 해양방위연구센터)
  • Received : 2018.04.23
  • Accepted : 2018.05.30
  • Published : 2018.05.31

Abstract

In port and coastal areas where ship traffic is frequent, ship noise dominantly influences underwater noise in low frequency band below 1 kHz. In this paper, we propose a modeling method to estimate the underwater shipping noise using the voyage information of ship observed in AIS (Automatic Identification System). For the purpose of ship noise modeling, the navigation information of the vessels operating in the southern part of Jeju was observed using AIS and underwater noise was measured by installing a hydrophone in the experimental area to verify the modeled ship noise. AIS data were used to model the noise level of ship and compared with measured underwater noise. The variation of noise level with time was found to be similar, and the cause of the error was discussed. Through this study, it was confirmed that the noise level of ship can be estimated within 5 dB error range using AIS data.

선박 통행이 잦은 항만 및 연안 주변지역은 1 kHz 이하의 저주파 대역에서 선박소음이 수중소음에 지배적으로 영향을 미친다. 본 논문에서는 선박자동식별장치(Automatic Identification System, AIS)에서 관측된 선박의 항해정보를 이용하여 수중 선박소음을 추정하는 모델링 방안을 제시한다. 선박소음 모델링을 목적으로 AIS를 이용하여 제주 남부 해역에서 활동하는 선박들의 항행정보를 관측하였고, 모델링된 선박소음의 결과 검증을 위해 실험해역에 수중청음기를 설치하여 수중소음을 측정하였다. AIS 데이터를 이용하여 선박소음준위를 모델링하여 측정된 수중소음과 비교한 결과 시간에 따른 소음준위의 변동 특성이 유사함을 확인하였고, 오차가 발생되는 원인에 대해 토의하였다. 본 연구를 통해 AIS 데이터를 이용하여 선박소음준위를 5 dB 오차 범위에서 추정이 가능함을 확인하였다.

Keywords

References

  1. R. J. Urick, Principles of Underwater Sound 3rd Edition (McGraw-Hill, New York, 1983), Chap. 7.
  2. M. V. Trevorrow, B. Vasiliev, and S. Vagle, "Direc- tionality and maneuvering effects on a surface ship underwater acoustic signature," J. Acoust. Soc. Am. 124, 767-778 (2008). https://doi.org/10.1121/1.2939128
  3. M. A. McDonald, J. A. Hildebrand, and S. M. Wiggins, "Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicholas Island, California," J. Acoust. Soc. Am. 120, 711-718 (2006). https://doi.org/10.1121/1.2216565
  4. J. A. Hildebrand, "Anthropogenic and natural sources of ambient noise in the ocean," Mar. Ecol. Proc. Ser. 395, 5-20 (2009). https://doi.org/10.3354/meps08353
  5. B. S. Halpern, S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D'Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck, and R. Watson, "A global map of human impact on marine ecosystems," Science 319, 948-952 (2008). https://doi.org/10.1126/science.1149345
  6. International Marine Organization (IMO), "Guidelines for the reduction of underwater noise from commercial shipping to address adverse impacts on marine life," IMO Doc., MEPC.1/Circ.833, Tech. Rep., 2006.
  7. D. H. Cato, "Shipping noise impacts on marine life," Proc. INTERNOISE, 16-19 (2014).
  8. C. Erbe, A. MacGillivray, and R. Williams, "Mapping cumulative noise from shipping to inform marine spatial planning," J. Acoust. Soc. Am. 132, EL423-428 (2012). https://doi.org/10.1121/1.4758779
  9. M. F. McKenna, and D. Ross, S. M. Wiggins, and J. A. Hildebrand, "Underwater radiated noise from modern commercial ships," J. Acoust. Soc. Am. 131, 92-103 (2012). https://doi.org/10.1121/1.3664100
  10. M. F. McKenna, S. M. Wiggins, and A. Hildebrand, "Relationship between container ship underwater noise levels and ship design, operational and oceanographic conditions," Sci. Rep. 3:1760 (2013). https://doi.org/10.1038/srep01760
  11. M. Gassmann, S. M. Wiggins, and J. A. Hildebrand, "Deep-water measurements of container ship radiated noise signatures and directionality," J. Acoust. Soc. Am. 142, 1563-1574 (2017). https://doi.org/10.1121/1.5001063
  12. C. Gervaise, F. Aulanier, Y. Simard, and N. Roy, "Mapping probability of shipping sound exposure level," J. Acoust. Soc. Am. 137, EL429-435 (2015). https://doi.org/10.1121/1.4921673
  13. NOAA, Cetacean and Sound Mapping, http://cetsound.noaa.gov/sound_data
  14. M. B. Porter and L. J. Henderson, "Global ocean soundscapes," Proc. Mtgs. Acoust., 19, 010050 (2013).
  15. M. B. Porter and L. J. Henderson, "Modeling ocean noise on the global scale," Proc. INTERNOISE, 1-7 (2014).
  16. M. B. Porter, Global Shipping Noise, http://oalib.hlsre-search.com
  17. C. Soares, F. Zabel, and S. M. Jesus, "A shipping noise prediction tool," Proc. OCEANS, 1-7 (2015).
  18. International Marine Organization (IMO), International convention for the Safety of Life at Sea (SOLAS), Chapter V Safety of Navigation, Annex 17. http://solasv.mcga.gov.uk/
  19. D. Ross, "Trends in merchant shipping (1969-1980)," Tetra Tech, Inc. Rep., 1975.
  20. D. Ross, Mechanics of Underwater Noise (Peninsula, Los Altos, 1987), pp.253-287.
  21. J. E. Breeding, L. A. Pflug, M. Bradley, M. H. Walrod, and W. McBride, Research Ambient Noise Directionality (RANDI) 3.1 Physics Description (US Naval Research Laboratory, Mississippi, 1996) pp. 5.
  22. M. D. Collins, "A split-step Pade solution for the parabolic equation method," J. Acoust. Soc. Am. 93, 1736-1742 (1993). https://doi.org/10.1121/1.406739
  23. E. L. Hamilton, "Compressional-wave attenuation in marine sediments," Geophysics 37, 620-646 (1972). https://doi.org/10.1190/1.1440287
  24. E. L. Hamilton, "Geoacoustic modeling of the sea floor," J. Acoust. Soc. Am. 68, 1313-1340 (1980). https://doi.org/10.1121/1.385100
  25. D. R. Jackson and M. D. Richardson, High-frequency seafloor acoustics (Springer, New York, 2007), pp. 167-169.
  26. W. M. Carey and R. B. Evens, Ocean Ambient Noise (Springer, New York, 2011), Chap. 5.
  27. MarineTraffic, Vessels Information, www.marinetraffic.com