DOI QR코드

DOI QR Code

두개내 동맥의 형태학적 특성이 비심인성 색전 뇌경색 발생 위험에 미치는 추가적 예후 가치

The Added Prognostic Value of Intracranial Artery Morphology to Predict Non-Cardioembolic Ischemic Stroke

  • 한나혜 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 장진희 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 변호균 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 이기정 (가톨릭대학교 의과대학 서울성모병원 신경과) ;
  • 구자성 (가톨릭대학교 의과대학 서울성모병원 신경과) ;
  • 최현석 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 정소령 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 안국진 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 김범수 (가톨릭대학교 의과대학 서울성모병원 영상의학과)
  • Han, Na Hye (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Jang, Jinhee (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Byun, Hokyun (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Lee, Kijeong (Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Koo, Jaseong (Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Choi, Hyun Seok (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Jung, So-Lyung (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Ahn, Kook-Jin (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Bum-soo (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • 투고 : 2017.05.24
  • 심사 : 2017.10.21
  • 발행 : 2018.04.01

초록

목적: 두개내 동맥의 형태학적 특성이 비심인성 색전 뇌경색 발생 위험에 미치는 추가적 예후 가치를 분석하고자 하였다. 대상과 방법: 후향적 연구를 시행하였으며, 급성 뇌경색이 없으면서 유체 속도 강조 자기공명 혈관조영술(time-of-flight magnetic resonance angiography; 이하 TOF-MRA)을 포함한 3T 자기공명영상을 시행한 86명의 환자가 등록되었다. 환자들은 첫 자기공명영상 시행 이후 > 120일 뒤에 확산강조영상(diffusion-weighted imaging; 이하 DWI)을 포함한 추적검사를 시행하였다. TOF-MRA에서 두개내 동맥의 확장, 협착, 사행의 세 가지 형태학적 특성을 분석하고 추적 DWI에서 급성 허혈성 뇌경색 여부를 평가하여 두 가지 예측 모형을 만들었다. 모형 1은 전통적 뇌경색 위험인자를, 모형 2는 이와 두개내 동맥의 형태학적 특성을 포함하였다. 두 모형 비교에 우도비 검정(likelihood-ratio)을 사용하였고, 모형의 성능은 Harrell의 일치 지수로 평가하였다. 결과: 14명의 환자가 비심인성 색전 뇌경색으로 진단되었고, 두 모형의 성능은 비심인성 색전 뇌경색 발생 위험 예측에 있어서 유의한 차이를 보였다(p = 0.031). Harrell의 일치 지수는 모형 2 ($0.78{\pm}0.05$)가 모형 1 $0.72{\pm}0.07$)보다 높았다. 결론: 전통적 뇌경색 위험인자와 더불어, 두개내 동맥의 형태학적 특성은 비심인성 색전 뇌경색 발생 위험 예측에 있어서 유용하다.

Purpose: To assess the added prognostic value of the morphologic characteristics of intracranial arteries in the risk modeling of a future non-cardioembolic stroke. Materials and Methods: This retrospective study included 86 patients without acute ischemic stroke who first underwent magnetic resonance imaging (MRI) including the time-of-flight magnetic resonance angiography (TOF-MRA) at 3T. Diffusion-weighted imaging (DWI) was performed for the follow-up imaging of these patients > 120 days after the initial MRI. The TOF-MRA result was used to analyze three morphological characteristics: dilatation, stenosis, and tortuosity. The presence of acute ischemic stroke was assessed using the follow-up DWI data. We built two prognostic models: model 1 includes the conventional stroke-risk factors, while model 2 includes the conventional risk factors and the morphologic characteristics of the intracranial arteries. We used the likelihood-ratio test to compare these two models. The models' performances were evaluated using Harrell's concordance index. Results: Fourteen patients suffered non-cardioembolic strokes. The performances of the two models differed significantly regarding the future-risk modeling of the non-cardioembolic stroke (p = 0.031). The Harrell's concordance index of model 2 ($0.78{\pm}0.05$) exceeded that of model 1 ($0.72{\pm}0.07$). Conclusion: In addition to the conventional stroke-risk factors, the morphologic characteristics of the intracranial arteries were useful in the modeling of the future risk of the non-cardioembolic ischemic stroke.

키워드

참고문헌

  1. Han J, Qiao H, Li X, Li X, He Q, Wang Y, et al. The three-dimensional shape analysis of the M1 segment of the middle cerebral artery using MRA at 3T. Neuroradiology 2014;56: 995-1005 https://doi.org/10.1007/s00234-014-1414-3
  2. Diedrich KT, Roberts JA, Schmidt RH, Kang CK, Cho ZH, Parker DL. Validation of an arterial tortuosity measure with application to hypertension collection of clinical hypertensive patients. BMC bioinformatics 2011;12 Suppl 10:S15
  3. Pico F, Labreuche J, Touboul PJ, Amarenco P. Intracranial arterial dolichoectasia and its relation with atherosclerosis and stroke subtype. Neurology 2003;61:1736-1742 https://doi.org/10.1212/01.WNL.0000103168.14885.A8
  4. Pico F, Labreuche J, Touboul PJ, Leys D, Amarenco P. Intracranial arterial dolichoectasia and small-vessel disease in stroke patients. Ann Neurol 2005;57:472-479 https://doi.org/10.1002/ana.20423
  5. Del Corso L, Moruzzo D, Conte B, Agelli M, Romanelli AM, Pastine F, et al. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology 1998;49:361-371 https://doi.org/10.1177/000331979804900505
  6. MacDougall NJ, Amarasinghe S, Muir KW. Secondary prevention of stroke. Expert Rev Cardiovasc Ther 2009;7:1103-1115 https://doi.org/10.1586/erc.09.77
  7. Gutierrez J, Sacco RL, Wright CB. Dolichoectasia-an evolving arterial disease. Nat Rev Neurol 2011;7:41-50 https://doi.org/10.1038/nrneurol.2010.181
  8. Coban G, Cifci E, Yildirim E, Agildere AM. Predisposing factors in posterior circulation infarcts: a vascular morphological assessment. Neuroradiology 2015;57:483-489 https://doi.org/10.1007/s00234-015-1490-z
  9. Nakamura Y, Hirayama T, Ikeda K. Clinicoradiologic features of vertebrobasilar dolichoectasia in stroke patients. J Stroke Cerebrovasc Dis 2012;21:5-10 https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.04.003
  10. Qiao Y, Anwar Z, Intrapiromkul J, Liu L, Zeiler SR, Leigh R, et al. Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke 2016;47:434-440 https://doi.org/10.1161/STROKEAHA.115.009955
  11. Lee WJ, Choi HS, Jang J, Sung J, Kim TW, Koo J, et al. Nonstenotic intracranial arteries have atherosclerotic changes in acute ischemic stroke patients: a 3T MRI study. Neuroradiology 2015;57:1007-1013 https://doi.org/10.1007/s00234-015-1566-9
  12. Morris SA, Orbach DB, Geva T, Singh MN, Gauvreau K, Lacro RV. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation 2011;124: 388-396 https://doi.org/10.1161/CIRCULATIONAHA.110.990549
  13. Deguchi I, Ohe Y, Fukuoka T, Dembo T, Nagoya H, Kato Y, et al. Relationship of obesity to recanalization after hyperacute recombinant tissue-plasminogen activator infusion therapy in patients with middle cerebral artery occlusion. J Stroke Cerebrovasc Dis 2012;21:161-164 https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.11.003
  14. Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI. A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 2000;21:643-646
  15. Kapeller P, Barber R, Vermeulen RJ, Ader H, Scheltens P, Freidl W, et al. Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 2003;34:441-445 https://doi.org/10.1161/01.STR.0000049766.26453.E9
  16. North American Symptomatic Carotid Endarterectomy Trial Collaborators; Barnett HJM, Taylor DW, Haynes RB, Sackett DL, Peerless SJ, Ferguson GG, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with highgrade carotid stenosis. N Engl J Med 1991;325:445-453 https://doi.org/10.1056/NEJM199108153250701
  17. Arboix A, Garcia-Eroles L, Massons JB, Oliveres M, Pujades R, Targa C. Atrial fibrillation and stroke: clinical presentation of cardioembolic versus atherothrombotic infarction. Int J Cardiol 2000;73:33-42 https://doi.org/10.1016/S0167-5273(99)00214-4
  18. Marti-Vilalta JL, Matias-Guiu J. [Nomenclature of cerebral vascular diseases]. Neurologia 1987;2:166-175
  19. Li ML, Xu WH, Song L, Feng F, You H, Ni J, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis 2009;204:447-452 https://doi.org/10.1016/j.atherosclerosis.2008.10.019
  20. Degnan AJ, Gallagher G, Teng Z, Lu J, Liu Q, Gillard JH. MR angiography and imaging for the evaluation of middle cerebral artery atherosclerotic disease. AJNR Am J Neuroradiol 2012;33:1427-1435 https://doi.org/10.3174/ajnr.A2697
  21. Ince B, Petty GW, Brown RD Jr, Chu CP, Sicks JD, Whisnant JP. Dolichoectasia of the intracranial arteries in patients with first ischemic stroke: a population-based study. Neurology 1998;50:1694-1698 https://doi.org/10.1212/WNL.50.6.1694
  22. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563-577 https://doi.org/10.1148/radiol.2015151169
  23. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. definitions for use in a multicenter clinical trial. TOAST. trial of Org 10172 in acute stroke treatment. Stroke 1993;24:35-41 https://doi.org/10.1161/01.STR.24.1.35
  24. Arboix A, Alio J. Acute cardioembolic stroke: an update. Expert Rev Cardiovasc Ther 2011;9:367-379 https://doi.org/10.1586/erc.10.192
  25. Galanis T, Merli GJ. Direct thrombin and factor Xa inhibition for stroke prevention in patients with atrial fibrillation. Hosp Pract (1995) 2013;41:26-36 https://doi.org/10.3810/hp.2013.02.1010
  26. Arboix A, Oliveres M, Massons J, Pujades R, Garcia-Eroles L. Early differentiation of cardioembolic from atherothrombotic cerebral infarction: a multivariate analysis. Eur J Neurol 1999;6:677-683 https://doi.org/10.1046/j.1468-1331.1999.660677.x
  27. Sacco RL, Benjamin EJ, Broderick JP, Dyken M, Easton JD, Feinberg WM, et al. American heart association prevention conference. IV. prevention and rehabilitation of stroke. risk factors. Stroke 1997;28:1507-1517 https://doi.org/10.1161/01.STR.28.7.1507
  28. Harmsen P, Lappas G, Rosengren A, Wilhelmsen L. Long-term risk factors for stroke: twenty-eight years of follow-up of 7457 middle-aged men in Goteborg, Sweden. Stroke 2006; 37:1663-1667 https://doi.org/10.1161/01.STR.0000226604.10877.fc
  29. Wolf PA, D'Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke 1991;22:312-318 https://doi.org/10.1161/01.STR.22.3.312