DOI QR코드

DOI QR Code

Study on the Thermal Behavior and Adhesion Properties of Polyurethane Hot Melt Adhesive via Induction Heating

유도가열에 의한 폴리우레탄 핫멜트 접착제의 열적 거동 및 접착특성 연구

  • Received : 2018.12.10
  • Accepted : 2018.12.20
  • Published : 2018.12.30

Abstract

In this study, a polyurethane hot melt adhesive was synthesized and metal particles sensitive to induction heating were added to produce an induction heating melt adhesive. The thermal behavior and adhesion characteristics of metal particles were investigated according to the kind, size and induction heating conditions. Among the various metal particles, induction heating efficiency was the best when nickel and iron were applied. Induction heating efficiency increased with decreasing metal particle size. In addition, the strength of the induction heating power of the adhesive was high and the adhesive strength was improved as the adhesive thickness was thinner.

본 연구에서는 폴리우레탄 핫멜트 접착제를 합성 후, 유도가열에 감응하는 금속 입자를 첨가하여 유도가열 melt형 접착제를 제조하고, 금속입자의 종류 및 크기, 유도가열 조건에 따른 열적 거동 및 접착특성을 연구하였다. 다양한 금속입자 중에서 iron 및 nickel 적용 시, 유도가열 효율이 가장 우수하였으며, 금속 입자의 크기가 작을수록 유도가열 효율이 향상되었다. 또한 접착제의 유도가열 출력 세기가 높고, 접착제 두께가 얇을수록 접착강도가 향상되었다.

Keywords

JGMHB1_2018_v19n4_167_f0001.png 이미지

Figure 1. Schematic diagram of induction heating setup.

JGMHB1_2018_v19n4_167_f0002.png 이미지

Figure 2. FT-IR spectrum of polyurethane hot melt adhesive.

JGMHB1_2018_v19n4_167_f0003.png 이미지

Figure 3. GPC chromatogram of polyurethane hot melt adhesive.

JGMHB1_2018_v19n4_167_f0004.png 이미지

Figure 4. Heating behavior in terms of metal particle kinds via induction heating.

JGMHB1_2018_v19n4_167_f0005.png 이미지

Figure 5. Heating behavior in terms of metal particle size via induction heating.

Table 1. Composition and property of Polyurethane hot melt adhesive

JGMHB1_2018_v19n4_167_t0001.png 이미지

Table 2. Heating behavior in terms of metal particle kinds via induction heating

JGMHB1_2018_v19n4_167_t0002.png 이미지

Table 3. Heating behavior in terms of metal particle size via induction heating

JGMHB1_2018_v19n4_167_t0003.png 이미지

Table 4. Adhesive property by induction heating power

JGMHB1_2018_v19n4_167_t0004.png 이미지

Table 5. Adhesive property according to adhesive thickness

JGMHB1_2018_v19n4_167_t0005.png 이미지

References

  1. Ine kim, Ji Soo Ha, J. Korean Society of Fashion Design, 12, 1, 93,(2012).
  2. Ji Hoo Kim, Gue Hyun Kim, J. Elastomers and Composites, 48, 3, 195,(2013). https://doi.org/10.7473/EC.2013.48.3.195
  3. D. H. Park, D. H. Moon, C. U. Lee, J. Asssoc. Korean Ind. 1, 200,(1991).
  4. J. S. Shin, J. M. Park, Y. H. Lee, H. D. Kim, J. Clean Tech. 20, 232,(2014). https://doi.org/10.7464/ksct.2014.20.3.232
  5. D. H. Shao, J. J. Huang, G. N. Chen, K. N. Chen, Polym. Degrad. Stab., 65, 359,(1999). https://doi.org/10.1016/S0141-3910(99)00025-7
  6. B. K. Kim, D. S. Lee, C. H. Do, H. M. Jeong, Polyurethanes, 1, 329,(2006)
  7. K. J. Ryu, C. Y. Park, J. Environmental Science International, 23, 1909,(2011).
  8. Bayerl, T., Duhovic, M., Mitschang, P., Bhattacharyya, D., Compos: Part A. 57, 27,(2014). https://doi.org/10.1016/j.compositesa.2013.10.024
  9. Buckley, J. D., Fox, R. L., and Tyeryar, J. R., Mater. Res. Soc. Symp. 124, 317,(1988). https://doi.org/10.1557/PROC-124-317
  10. D. H. Bae, M. J. Moon, M. Y. Shon, S. T. Oh, G. N. Kim, D. W. Yun, J. Adhesion, (2016)
  11. Suwanwatana. W, Yarlagadda. S, Gillespie. J. Compos Sci Technol. 66, 282, (2006)
  12. Babincova, M.; Leszczynska, D.; Sourivong, P. J. Magn. Mater. 109, 225, (2001)