DOI QR코드

DOI QR Code

Enhanced Vein Detection Method by Using Image Scaler Based on Poly Phase Filter

Poly Phase Filter 기반의 영상 스케일러를 이용한 개선 된 정맥 영역 추출 방법

  • Kim, HeeKyung (Department of Electronic Engineering, Dong-A University) ;
  • Lee, Seungmin (Department of Electronic Engineering, Dong-A University) ;
  • Kang, Bongsoon (Department of Electronic Engineering, Dong-A University)
  • Received : 2017.12.29
  • Accepted : 2018.04.23
  • Published : 2018.05.31

Abstract

Fingerprint recognition and iris recognition, which are one of the biometric methods, are easily influenced by external factors such as sunlight. Recently, finger vein recognition is used as a method utilizing internal features. However, for accurate finger vein recognition, it is important to clearly separate vein and background regions. However, it is difficult to separate the vein region and background region due to the abnormalized illumination, and a method of separating the vein region and the background region after normalized the illumination of the input image has been proposed. In this paper, we proposed a method to enhance the quality improvement and improve the processing time compared to the existing finger vein recognition system binarization and labeling method of the image including the image stretching process based on the existing illumination normalization method.

생체 인식 방식 중 하나인 지문 인식과 홍채 인식 등은 태양광과 같은 외부 요소에 쉽게 영향을 받는다. 따라서 최근에는 생체 내부의 특징을 이용하는 방법으로 지정맥 인식을 이용하고 있다. 정확한 정맥 인식을 위해서는 정맥 영역과 배경 영역을 확실하게 분리하는 것이 중요하다. 하지만 입력 영상에 포함 된 불균일한 조명 성분의 영향으로 정맥 영역과 배경 영역을 분리하는 것이 어려웠기 때문에 입력 영상의 조명 성분을 정규화 시킨 후 정맥 영역과 배경 영역을 분리 할 수 있는 방법이 제안되었다. 본 논문에서는 기존의 조명 정규화 방법을 바탕으로 영상 스트레칭 과정이 포함 된 영상의 전처리 단계와 이진화, 레이블링 방법을 개선하여 기존의 정맥 인식 기법에 비해 더 나은 질적 개선을 이루고 처리 속도를 향상 시킬 수 있는 방법을 제안한다.

Keywords

References

  1. J. Park and Y. Kim, "Fingerprint Recognition matching method using statistical," Journal of Security Engineering, vol.12, no.3, pp.273-282, Jun. 2015. https://doi.org/10.14257/jse.2015.06.07
  2. M. Sapkale and S. M. Rajbhoj, "A Finger Vein Recognition System," in Proceedings of the Conference on Advances in Signal Processing, Pune, pp. 306-310, 2016.
  3. W. Yang, S. Wang, J. Hu, G. Zheng, and C. Valli, "A fingerprint and finger-vein based cancelable multi-biometric system," Journal of Pattern Recognition, vol.78, pp.242-251, Jun. 2018. https://doi.org/10.1016/j.patcog.2018.01.026
  4. J. Yang, Y. Shi, and G, Jia, "Finger-vein image matching based on adaptive curve transformation," Journal of Patter Recognition, vol. 66, pp.34-43, Jun. 2017. https://doi.org/10.1016/j.patcog.2017.01.008
  5. W. Kim and K. R. Park, "A Survey on Feature Extraction Method for Finger-vein Recognition," in Proceedings of the Institute of Electronics Engineers of Korea, Busan, pp.568-570, 2017.
  6. J. W. Lee and B. R. Lee, "ROI Extraction and Enhancement for Finger Vein Recognition," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 4, pp. 948-953, Apr. 2015. https://doi.org/10.6109/jkiice.2015.19.4.948
  7. J. W. Lee and B. R. Lee, "Virtual core point detection and ROI extraction for finger vein recognition," Journal of Korea Institute of information, Electronics, and Communication Technology, vol. 10, no. 3, pp. 249-255, Jun. 2017. https://doi.org/10.17661/jkiiect.2017.10.3.249
  8. E. C. Lee, "A Method for Improving Vein Recognition Performance by Illumination Normalization," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 2, pp 423-430, Feb. 2013. https://doi.org/10.6109/jkiice.2013.17.2.423
  9. H. Lee, B. Lee, Y. Lee, and B. Kang, "Optimized VLSI Design for Enhanced Image Downscaler," in Proceedings of the Second IEEE Asia Pacific Conference on ASICs, pp. 139-142, Aug. 2000.
  10. A. Perez and C. Gonzalez, "An Iterative Thresholding Algorithm for Image Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 6, Nov. 1987.
  11. F. Samopa and A. Asano, "Hybrid Image Thresholding Method using Edge Detection," International Journal of Computer Science and Network Security, vol. 9, no. 4, Apr. 2009.
  12. F. Leymarie and M. D. Levine, "Simulating the Grassfire Transform Using an Active Contour Model," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 14, no. 1, pp. 56-75, Jan. 1992. https://doi.org/10.1109/34.107013
  13. H. W. Jung, B. D. Kwak, K. J. Kim, and B. Kang, "Algorithm of Twin Line Labeling for Binary Image in Real Time Image Processing," in Proceedings of the Institute of Electronics Engineers of Korea, Jeju, 2009.
  14. T. Y. Zhang and C. Y. Suen, "A Fast Parallel Algorithm for Thinning Digital Patterns," Communications of the ACM, vol. 27, no. 3, pp. 236-239, Mar. 1984. https://doi.org/10.1145/357994.358023
  15. T. Fawcett, "An introduce to ROC analysis," Pattern recognition letters, vol. 27, no. 8, pp. 861-874, Jun. 2006. https://doi.org/10.1016/j.patrec.2005.10.010