References
- Burke D, Carle GF, Olson MV. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vector. Science 236: 806-811. https://doi.org/10.1126/science.3033825
- Pavan WJ, Hieter P, Sears D, Burkhoff A, Reeves RH. 1991. High-efficiency yeast artificial chromosome fragmentation vectors. Gene 106: 125-127. https://doi.org/10.1016/0378-1119(91)90576-W
- Emanuel SL, Cook JR, O'Rear J, Rothstein R, Pestka S. 1995. New vectors for manipulation and selection of functional yeast artificial chromosomes (YACs) containing human DNA inserts. Gene 155: 167-174. https://doi.org/10.1016/0378-1119(94)00852-J
- Kim YH, Kaneko Y, Fukui K, Kobayashi A, Harashima S. 2005. A yeast artificial chromosome-splitting vector designed for precise manipulation of specific plant chromosome region. J. Biosci. Bioeng. 99: 55-60. https://doi.org/10.1263/jbb.99.55
- Smith DR, Smyth AP, Moir DT. 1990. Amplification of large artificial chromosomes. Proc. Natl. Acad. Sci. USA 87: 8242- 8246. https://doi.org/10.1073/pnas.87.21.8242
- Kim YH, Sugiyama M, Yamagishi K, Kaneko Y, Fukui K, Kobayashi A, et al. 2005. A versatile and general splitting technology for generating targeted YAC subclones. Appl. Microbiol. Biotechnol. 69: 65-70. https://doi.org/10.1007/s00253-005-1970-x
- Sugiyama M, Ikushima S, Nakazawa T, Kaneko Y, Harashima S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 38: 909-914. https://doi.org/10.2144/05386RR01
- Kim YH, Nam SW. 2010. Development of simultaneous YAC manipulation-amplification (SYMA) system by chromosome splitting technique harboring copy number amplification system. J. Life Sci. 20: 789-793. https://doi.org/10.5352/JLS.2010.20.5.789
-
Chun YC, Jung KH, Lee JC, Park SH, Chung HK, Yoon KH. 1998. Molecular cloning and the nucleotide sequence of a Bacillus sp. KK-1
${\beta}$ -xylosidase gene. J. Microbiol. Biotechnol. 8: 28-33. - Lee LH, Kim DY, Han MK, Oh HW, Ham SJ, Park DS, et al. 2009. Characterization of an extracellular xylanase from Bacillus sp. HY-20, a bacterium in the gut of Apis mellifera. Korean J. Microbiol. 45: 332-338.
- Kim SR, Kwee NR, Kim B, Jin YS. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulose kinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 13: 312-321. https://doi.org/10.1111/1567-1364.12036
Cited by
- 융합법을 이용한 바이오에탄올 생산에 적합한 효모균주의 구축 vol.29, pp.3, 2019, https://doi.org/10.5352/jls.2019.29.3.376
- 출아효모에서 다양한 이종 유전자의 안정적 동시발현을 위한 방법의 비교 vol.47, pp.4, 2019, https://doi.org/10.4014/mbl.1907.07004
- APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA. vol.26, pp.3, 2018, https://doi.org/10.15446/abc.v26n3.85760
- Trends and Applications of Omics Technologies to Functional Characterisation of Enzymes and Protein Metabolites Produced by Fungi vol.7, pp.9, 2018, https://doi.org/10.3390/jof7090700