DOI QR코드

DOI QR Code

Functional Characterization of an Exopolysaccharide Produced by Bacillus sonorensis MJM60135 Isolated from Ganjang

  • Received : 2017.12.16
  • Accepted : 2018.02.23
  • Published : 2018.05.28

Abstract

The present study focused on the production, characterization, and in vitro prebiotic evaluation of an exopolysaccharides (EPS) from Bacillus sonorensis MJM60135 isolated from ganjang (fermented soy sauce). Strain MJM60135 showed the highest production ($8.4{\pm}0.8g/l$) of EPSs compared with other isolates that were screened for EPS production based on ropy culture morphology. Furthermore, MJM60135 was cultured in 5 L of medium and the EPS was extracted by ethanol precipitation. The emulsification activity of the EPS was higher in toluene than in o-xylene. Fourier transform infrared spectroscopy analysis showed the presence of hydroxyl and carboxyl groups and glycosidic linkages. The isolated EPS contained mannose and glucose, as observed by thin-layer chromatography analysis of the EPS hydrolysate. Lactic acid bacteria (LAB) and pathogenic E. coli K99 and Salmonella enterica serovar Typhimurium were tested for their growth utilizing the EPS from B. sonorensis MJM60135 as the sole carbon source for its possible use as a prebiotic. All the tested LAB exhibited growth in the EPS-supplied medium compared with glucose as carbon source, whereas the pathogenic strains did not grow in the EPS-supplied medium. These findings indicate that the EPS from B. sonorensis MJM60135 has potential application in the bioremediation of hydrocarbons and could also be used as a prebiotic.

Keywords

References

  1. Nwodo UU, Green E, Okoh AI. 2012. Bacterial exopoly- saccharides: functionality and prospects. Int. J. Mol. Sci. 13: 14002-14015. https://doi.org/10.3390/ijms131114002
  2. Prajapat J, Patel A. 2013. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv. Dairy Res. 1: 1-8. https://doi.org/10.9734/AIR/2013/6143
  3. Grosu-Tudor S-S, Zamfir M, Meullen RVD, Falony G, Vuyst LD. 2013. Prebiotic potential of some exopolysaccharides produced by lactic acid bacteria. Rom. Biotechnol. Lett. 18: 8666-8676.
  4. De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153-177. https://doi.org/10.1111/j.1574-6976.1999.tb00395.x
  5. Liu J, Luo J, Ye H, Zeng X. 2012. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem. Toxicol. 50: 767-772. https://doi.org/10.1016/j.fct.2011.11.016
  6. Chen Y-T, Yuan Q, Shan L-T, Lin M-A, Cheng D-Q, Li C-Y. 2013. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol. Lett. 5: 1787-1792. https://doi.org/10.3892/ol.2013.1284
  7. Rasulov MM, Kuznetsov IG, Slutskii LI, Velikaia MV, Zabozlaev AG, Voronkov MG. 1993. The ulcerostatic effect of the exopolysaccharide from Bacillus mucilaginosus and its possible mechanisms. Biull. Eksp. Biol. Med. 116: 504-505.
  8. Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G. 2006. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int. Immunopharmacol. 6: 8-13. https://doi.org/10.1016/j.intimp.2005.07.004
  9. Uchida M, Ishii I, Inoue C, Akisato Y, Watanabe K, Hosoyama S, et al. 2010. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet. J. Atheroscler. Thromb. 17: 980-988. https://doi.org/10.5551/jat.4812
  10. Bello FD, Walter J, Hertel C, Hammes WP. 2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst. Appl. Microbiol. 24: 232-237 https://doi.org/10.1078/0723-2020-00033
  11. Hongpattarakere T, Cherntong N, Wichienchot S, Kolida S, Rastall RA. 2012. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr. Polym. 87: 846-852. https://doi.org/10.1016/j.carbpol.2011.08.085
  12. Kodali VP, Sen R. 2008. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. 3: 245-251. https://doi.org/10.1002/biot.200700208
  13. Kodali VP, Perali RS, Sen R. 2011. Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02. J. Nat. Prod. 74: 1692-1697. https://doi.org/10.1021/np1008448
  14. Song Y-R, Jeong D-Y, Baik S-H. 2013. Optimal production of exopolysaccharide by Bacillus licheniformis KS-17 isolated from kimchi. Food Sci. Biotechnol. 22: 417-423. https://doi.org/10.1007/s10068-013-0096-7
  15. Spano A, Gugliandolo C, Lentini V, Maugeri TL, Anzelmo G, Poli A, et al. 2013. A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea island (Italy). Curr. Microbiol. 67: 21-29.
  16. Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, et al. 2011. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb. Cell Fact. 10: 74. https://doi.org/10.1186/1475-2859-10-74
  17. Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M. 2010. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour. Technol. 101: 5528-5533. https://doi.org/10.1016/j.biortech.2010.01.151
  18. Bren A, Park JO, Towbin BD, Dekel E, Rabinowitz JD, Alon U. 2016. Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci. Rep. 6: 24834. https://doi.org/10.1038/srep24834
  19. Wang X, Yuan Y, Wang K, Zhang D, Yang Z, Xu P. 2007. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. J. Biotechnol. 128: 403-407. https://doi.org/10.1016/j.jbiotec.2006.09.019
  20. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72. https://doi.org/10.1016/j.ab.2004.12.001
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  23. Fusconi R, Nascimento Assuncao RM, de Moura Guimaraes R, Rodrigues Filho G, Eduardo da Hora Machado A. 2010. Exopolysaccharide produced by Gordonia polyisoprenivorans CCT 7137 in GYM commercial medium and sugarcane molasses alternative medium: FT-IR study and emulsifying activity. Carbohydr. Polym. 79: 403-408. https://doi.org/10.1016/j.carbpol.2009.08.023
  24. Wang Y, Ahmed Z, Feng W, Li C, Song S. 2008. Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int. J. Biol. Macromol. 43: 283-288. https://doi.org/10.1016/j.ijbiomac.2008.06.011
  25. Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG. 2000. Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccharides with use of IR spectra deconvolution. Biopolymers 57: 257-262. https://doi.org/10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3
  26. Yin WF, Tung HJ, Sam CK, Koh CL, Chan KG. 2012. Quorum quenching Bacillus sonorensis isolated from soya sauce fermentation brine. Sensors 12: 4065-4073. https://doi.org/10.3390/s120404065
  27. Chettri R, Bhutia MO, Tamang JP. 2016. Poly-gamma-glutamic acid (PGA)-producing Bacillus species isolated from Kinema, Indian fermented soybean food. Front. Microbiol. 7: 971.
  28. Lee IY, Seo WT, Kim GJ, Kim MK, Ahn SG, Kwon GS, et al. 1997. Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa. Bioprocess Eng. 16: 71-75. https://doi.org/10.1007/s004490050290
  29. Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CRK, Jha B. 2011. Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydr. Polym. 84: 1019-1026. https://doi.org/10.1016/j.carbpol.2010.12.061
  30. Larpin S, Sauvageot N, Pichereau V, Laplace JM, Auffray Y. 2002. Biosynthesis of exopolysaccharide by a Bacillus licheniformis strain isolated from ropy cider. Int. J. Food Microbiol. 77: 1-9. https://doi.org/10.1016/S0168-1605(02)00058-2
  31. Manca MC, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B. 1996. Chemical composition of two exopoly-saccharides from Bacillus thermoantarcticus. Appl. Environ. Microbiol. 62: 3265-3269.
  32. Ron EZ, Rosenberg E. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3: 229-236. https://doi.org/10.1046/j.1462-2920.2001.00190.x
  33. Han Y, Liu E, Liu L, Zhang B, Wang Y, Gui M, et al. 2015. Rheological, emulsifying and thermostability properties of two exopolysaccharides produced by Bacillus amyloliquefaciens LPL061. Carbohydr. Polym. 115: 230-237. https://doi.org/10.1016/j.carbpol.2014.08.044
  34. Nicolaus B, Panico A, Manca MC, Lama L, Gambacorta A, Maugeri T, et al. 2000. A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent able to produce exopolysaccharides. Syst. Appl. Microbiol. 23: 426-432. https://doi.org/10.1016/S0723-2020(00)80074-0
  35. Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, et al. 2002. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol. Lett. 24: 515-519. https://doi.org/10.1023/A:1014891431233

Cited by

  1. Production and characterization of multifacet exopolysaccharide from an agricultural isolate,Bacillus subtilis vol.66, pp.6, 2018, https://doi.org/10.1002/bab.1824
  2. A New Strain of Bacillus tequilensis CGMCC 17603 Isolated from Biological Soil Crusts: A Promising Sand-Fixation Agent for Desertification Control vol.11, pp.22, 2018, https://doi.org/10.3390/su11226501
  3. Characterization and bioactivities of exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE. vol.24, pp.None, 2018, https://doi.org/10.1016/j.bcdf.2020.100231
  4. Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-58676-2
  5. Isolation, characterization, and interaction of lignin‐degrading bacteria from rumen of buffalo (Bubalus bubalis) vol.61, pp.8, 2018, https://doi.org/10.1002/jobm.202100068
  6. Structural Characterisation and Assessment of the Novel Bacillus amyloliquefaciens RK3 Exopolysaccharide on the Improvement of Cognitive Function in Alzheimer’s Disease Mice vol.13, pp.17, 2018, https://doi.org/10.3390/polym13172842