DOI QR코드

DOI QR Code

Gender differences of anaerobic capabilities in untrained adults

비훈련 성인남여의 무산소성 운동능력 차이

  • Jeong, Jinwon (Dept. of Exercise Prescription, Jeonju University)
  • 정진원 (전주대학교 운동처방학과)
  • Received : 2018.03.15
  • Accepted : 2018.05.20
  • Published : 2018.05.28

Abstract

The purpose of the study was to investigate the gender differences of anaerobic capabilities between anaerobic capacity(AC) from Wingate test and anaerobic work capacity(AWC) from critical power test in untrained male and female adults. Both tests were carried out to 12 male and 13 female subjects on a Monark cycle ergometer. The results of this study demonstrated that men were higher than women in AC for the Wingate test, but no gender difference(J/kg) in AWC for the Critical Power test. There was a significant relationship between AC(J/kg) and AWC(J/kg) in women(r=0.61, p<0.05), but no significant relationship in men(r=-0.32, p>0.05). ANCOVA analyses using $VO_{2max}$ and body weight as covariates had significant influence on the AWC gender difference. The study provides preliminary data on gender differences of anaerobic capabilities.

본 연구의 목적은 윈게이트 검사로부터 측정된 무산소성 운동능력(Anaerobic Capacity, AC)과 임계파워검사로부터 측정된 무산소성 작업능력(Anaerobic Work Capacity, AWC)의 상관관계를 알아보고, 두 가지의 무산소성 능력에서 나타나는 남녀간의 성별 차이를 조사하는데 있었다. 성인 남여 23명을 대상으로 모나크 자전거 에르고미터를 이용하여 두가지 테스트를 수행하였다. 각각의 무산소성 검사에서 AC에서는 남성이 여성보다 높게 나타났으나 AWC에서는 남녀간 차이가 나타나지 않았다. AC와 AWC(J/kg)사이의 상관관계는 여성에서는 통계적으로 유의하였으나(r=0.61, p<0.05), 남성에서는 유의하지 않았다(r=-0.32, p>0.05). 최대 유산소 능력과 체중을 공변인으로 한 공변량분석 결과에 의하면 두 변인이 AC의 남녀간의 차이에는 유의한 영향을 미치지 않았으나 AWC의 남녀간의 차이에는 통계적으로 유의한 영향을 미친 것으로 나타났다. 또한 본 연구결과는 무산소 운동검사로 평가되는 남녀간의 성별 차이에 대한 기초적인 자료를 제공하고 있다.

Keywords

References

  1. S. G. Back. (2016). Effects of using convergence cicuit training on the blood lipids and oxygen-carrying factors in middle-aged women, Journal of the Korea Convergence Society, 7(6), 267-274. https://doi.org/10.15207/JKCS.2016.7.6.267
  2. Y. S. So. (2016). The effect of combined exercise on body composition, functionak fitness and muscle protein synthesis related hormone in sacopenic obesity elderly women. Journal of the Korea Convergence Society, 7(3), 185-193. https://doi.org/10.15207/JKCS.2016.7.3.185
  3. O.Bar-Or & O. Inbar. (1978). Relationships among anaerobic capacity, sprint and middle distance running of school children. Physical Fitness Assessment. Springfield, IL: Charles C Thomas, pp. 142-147.
  4. O. Bar-Or.(1987). The Wingate Anaerobic Test:An update on methodology, reliability and validity. Sports Med. 4, 381-394. https://doi.org/10.2165/00007256-198704060-00001
  5. J. M. Eckerson, J. R. Stout, G. A. Moore, K. Nishimura & K. Tamura.(2004). Effect of two and five days of creatine loading Anaerobic Working Capacity in Women. J. of Strength and Conditioning Research. 18(1), 168-172. https://doi.org/10.1519/1533-4287(2004)018<0168:EOTAFD>2.0.CO;2
  6. R Bulbulian, A. R. Wiklcox & B. L. Darabos. (1986). Anaerobic contribution to distance running performance of trained crosscountry athletes. Med. Sci. Sports Exerc. 18, 107-113.
  7. J.Dekerle, G. Brickley, A. J. P. Hammond, J. S. M. Pringle & H. Caeter. (2006). Validity of the two parameter model in estimating the anaerobic work capacity. Eur. J. of Appl. Physio, 96, 257-264. https://doi.org/10.1007/s00421-005-0074-8
  8. H. Monod & J. Scherrer. (1965). Work capacity of a synergic muscular group. Ergonomics, 8, 329-338. https://doi.org/10.1080/00140136508930810
  9. G. A. Gaesser & L. A. Wilson. (1988). Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. Int. J. Sports Med, 9, 417-421. https://doi.org/10.1055/s-2007-1025043
  10. L. J. Nebelsick-Gullett, T. J. Housh, G. O. Johnson & S. M. Bauge. (1988). A comparison between methods of measuring anaerobic work capacity. Ergonomics, 31, 1413-1419. https://doi.org/10.1080/00140138808966785
  11. D. G. Jenkins & B. M. Quigley. (1990). Blood lactate in trained cyclists during cycle ergometry at critical power. Eur. J. Appl. Physiol, 61, 278-283. https://doi.org/10.1007/BF00357613
  12. H. Vandewalle, B. Kapitaniak, S. Grun, S. Raveneau & H. Monod.(1989). Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. Eur. J. Appl. Physiol, 58, 375-381. https://doi.org/10.1007/BF00643512
  13. G. Stevens & B. Wilson.(1986). Aerobic contribution to the Wingate test. Med. Sci. Sports Exerc, 18, S2.
  14. M. E Cheetham, L. H. Boobis & C. Williams.(1988).Human muscle metabolism during sprint running. J. Appl. Physiol, 61, 54-60.
  15. J. I. Melbo, A. C. Mohn, I. Tabata, R. Bahr, O. Vaage & O. M. Sejersted. (1988). Anaerobic capacity determined by maximal accumulated $O_2$ deficit. J. Appl. Physiol, 64, 50-60. https://doi.org/10.1152/jappl.1988.64.1.50
  16. P. D. Gollnick, R. B. Armstrong & W. L Sembrowich. (1973). Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J. Appl. Physiol, 34, 615-618. https://doi.org/10.1152/jappl.1973.34.5.615
  17. D. W. Hill & J. C. Smith. (1993). Gender differences in anaerobic capacity : role of aerobic contribution. Br. J. Sports Med, 27, 45-48. https://doi.org/10.1136/bjsm.27.1.45