DOI QR코드

DOI QR Code

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE GENERALIZED MHD AND HALL-MHD SYSTEMS IN ℝn

  • Received : 2017.01.31
  • Accepted : 2018.01.29
  • Published : 2018.05.31

Abstract

This paper deals with the asymptotic behavior of solutions to the generalized MHD and Hall-MHD systems. Firstly, the upper bound for the generalized MHD and Hall-MHD systems is investigated in $L^2$ space. Then, the effect of the Hall term is analyzed. Finally, we optimize the upper bound of decay and obtain their algebraic lower bound for the generalized MHD system by using Fourier splitting method.

Keywords

References

  1. D. Chae, P. Degond, and J.-G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincare Anal. Non Lineaire 31 (2014), no. 3, 555-565. https://doi.org/10.1016/j.anihpc.2013.04.006
  2. D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations 256 (2014), no. 11, 3835-3858. https://doi.org/10.1016/j.jde.2014.03.003
  3. D. Chae and M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differential Equations 255 (2013), no. 11, 3971-3982. https://doi.org/10.1016/j.jde.2013.07.059
  4. D. Chae, R. Wan, and J. Wu, Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion, J. Math. Fluid Mech. 17 (2015), no. 4, 627-638. https://doi.org/10.1007/s00021-015-0222-9
  5. D. Chae and S.Weng, Singularity formation for the incompressible Hall-MHD equations without resistivity, Ann. Inst. H. Poincare Anal. Non Lineaire 33 (2016), no. 4, 1009-1022. https://doi.org/10.1016/j.anihpc.2015.03.002
  6. P. Han and M. E. Schonbek, Large time decay properties of solutions to a viscous Boussinesq system in a half space, Adv. Differential Equations 19 (2014), no. 1-2, 87-132.
  7. Z. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal. 75 (2012), no. 13, 5002-5009. https://doi.org/10.1016/j.na.2012.04.014
  8. Z. Jiang and Y. Zhou, Local existence for the generalized MHD equations, submitted, 2014.
  9. Q. Jiu and H. Yu, Decay of solutions to the three-dimensional generalized Navier-Stokes equations, Asymptot. Anal. 94 (2015), no. 1-2, 105-124. https://doi.org/10.3233/ASY-151307
  10. R. Kajikiya and T. Miyakawa, On $L^2$ decay of weak solutions of the Navier-Stokes equations in $\mathbb{R}^n$, Math. Z. 192 (1986), no. 1, 135-148. https://doi.org/10.1007/BF01162027
  11. N. Pan, C. Ma, and M. Zhu, Global regularity for the 3D generalized Hall-MHD system, Appl. Math. Lett. 61 (2016), 62-66. https://doi.org/10.1016/j.aml.2016.05.005
  12. N. Pan and M. Zhu, A new regularity criterion for the 3D generalized Hall-MHD system with ${\beta}$ $\in$ ($\frac{1}{2}$, 1], J. Math. Anal. Appl. 445 (2017), no. 1, 604-611. https://doi.org/10.1016/j.jmaa.2016.08.015
  13. M. E. Schonbek, Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations 5 (1980), no. 5, 449-473. https://doi.org/10.1080/0360530800882145
  14. M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88 (1985), no. 3, 209-222. https://doi.org/10.1007/BF00752111
  15. M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations 11 (1986), no. 7, 733-763. https://doi.org/10.1080/03605308608820443
  16. M. E. Schonbek, Lower bounds of rates of decay for solutions to the Navier-Stokes equations, J. Amer. Math. Soc. 4 (1991), no. 3, 423-449. https://doi.org/10.1090/S0894-0347-1991-1103459-2
  17. M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in $H^m$ spaces, Comm. Partial Differential Equations 20 (1995), no. 1-2, 103-117. https://doi.org/10.1080/03605309508821088
  18. M. E. Schonbek and M. Wiegner, On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 3, 677-685. https://doi.org/10.1017/S0308210500022976
  19. M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), no. 5, 635-664. https://doi.org/10.1002/cpa.3160360506
  20. R. Wan, Global regularity for generalized Hall magneto-hydrodynamics systems, Electron. J. Differential Equations 2015 (2015), no. 179, 18 pp.
  21. R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differential Equations 259 (2015), no. 11, 5982-6008. https://doi.org/10.1016/j.jde.2015.07.013
  22. S. Weng, On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system, J. Differential Equations 260 (2016), no. 8, 6504-6524. https://doi.org/10.1016/j.jde.2016.01.003
  23. S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal. 270 (2016), no. 6, 2168-2187. https://doi.org/10.1016/j.jfa.2016.01.021
  24. M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbb{R}^n$, J. London Math. Soc. (2) 35 (1987), no. 2, 303-313.
  25. J.Wu, Generalized MHD equations, J. Differential Equations 195 (2003), no. 2, 284-312. https://doi.org/10.1016/j.jde.2003.07.007
  26. J.Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech. 13 (2011), no. 2, 295-305. https://doi.org/10.1007/s00021-009-0017-y
  27. X. Wu, Y. Yu, and Y. Tang, Global existence and asymptotic behavior for the 3D generalized Hall-MHD system, Nonlinear Anal. 151 (2017), 41-50. https://doi.org/10.1016/j.na.2016.11.010
  28. Z. Ye, Regularity criteria and small data global existence to the generalized viscous Hall-magnetohydrodynamics, Comput. Math. Appl. 70 (2015), no. 8, 2137-2154. https://doi.org/10.1016/j.camwa.2015.08.028
  29. Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincare Anal. Non Lineaire 24 (2007), no. 3, 491-505. https://doi.org/10.1016/j.anihpc.2006.03.014
  30. Y. Zhou, A remark on the decay of solutions to the 3-D Navier-Stokes equations, Math. Methods Appl. Sci. 30 (2007), no. 10, 1223-1229.