References
- D. Chae, P. Degond, and J.-G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincare Anal. Non Lineaire 31 (2014), no. 3, 555-565. https://doi.org/10.1016/j.anihpc.2013.04.006
- D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations 256 (2014), no. 11, 3835-3858. https://doi.org/10.1016/j.jde.2014.03.003
- D. Chae and M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differential Equations 255 (2013), no. 11, 3971-3982. https://doi.org/10.1016/j.jde.2013.07.059
- D. Chae, R. Wan, and J. Wu, Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion, J. Math. Fluid Mech. 17 (2015), no. 4, 627-638. https://doi.org/10.1007/s00021-015-0222-9
- D. Chae and S.Weng, Singularity formation for the incompressible Hall-MHD equations without resistivity, Ann. Inst. H. Poincare Anal. Non Lineaire 33 (2016), no. 4, 1009-1022. https://doi.org/10.1016/j.anihpc.2015.03.002
- P. Han and M. E. Schonbek, Large time decay properties of solutions to a viscous Boussinesq system in a half space, Adv. Differential Equations 19 (2014), no. 1-2, 87-132.
- Z. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal. 75 (2012), no. 13, 5002-5009. https://doi.org/10.1016/j.na.2012.04.014
- Z. Jiang and Y. Zhou, Local existence for the generalized MHD equations, submitted, 2014.
- Q. Jiu and H. Yu, Decay of solutions to the three-dimensional generalized Navier-Stokes equations, Asymptot. Anal. 94 (2015), no. 1-2, 105-124. https://doi.org/10.3233/ASY-151307
-
R. Kajikiya and T. Miyakawa, On
$L^2$ decay of weak solutions of the Navier-Stokes equations in$\mathbb{R}^n$ , Math. Z. 192 (1986), no. 1, 135-148. https://doi.org/10.1007/BF01162027 - N. Pan, C. Ma, and M. Zhu, Global regularity for the 3D generalized Hall-MHD system, Appl. Math. Lett. 61 (2016), 62-66. https://doi.org/10.1016/j.aml.2016.05.005
-
N. Pan and M. Zhu, A new regularity criterion for the 3D generalized Hall-MHD system with
${\beta}$ $\in$ ($\frac{1}{2}$ , 1], J. Math. Anal. Appl. 445 (2017), no. 1, 604-611. https://doi.org/10.1016/j.jmaa.2016.08.015 - M. E. Schonbek, Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations 5 (1980), no. 5, 449-473. https://doi.org/10.1080/0360530800882145
-
M. E. Schonbek,
$L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88 (1985), no. 3, 209-222. https://doi.org/10.1007/BF00752111 - M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations 11 (1986), no. 7, 733-763. https://doi.org/10.1080/03605308608820443
- M. E. Schonbek, Lower bounds of rates of decay for solutions to the Navier-Stokes equations, J. Amer. Math. Soc. 4 (1991), no. 3, 423-449. https://doi.org/10.1090/S0894-0347-1991-1103459-2
-
M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in
$H^m$ spaces, Comm. Partial Differential Equations 20 (1995), no. 1-2, 103-117. https://doi.org/10.1080/03605309508821088 - M. E. Schonbek and M. Wiegner, On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 3, 677-685. https://doi.org/10.1017/S0308210500022976
- M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), no. 5, 635-664. https://doi.org/10.1002/cpa.3160360506
- R. Wan, Global regularity for generalized Hall magneto-hydrodynamics systems, Electron. J. Differential Equations 2015 (2015), no. 179, 18 pp.
- R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differential Equations 259 (2015), no. 11, 5982-6008. https://doi.org/10.1016/j.jde.2015.07.013
- S. Weng, On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system, J. Differential Equations 260 (2016), no. 8, 6504-6524. https://doi.org/10.1016/j.jde.2016.01.003
- S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal. 270 (2016), no. 6, 2168-2187. https://doi.org/10.1016/j.jfa.2016.01.021
-
M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on
$\mathbb{R}^n$ , J. London Math. Soc. (2) 35 (1987), no. 2, 303-313. - J.Wu, Generalized MHD equations, J. Differential Equations 195 (2003), no. 2, 284-312. https://doi.org/10.1016/j.jde.2003.07.007
- J.Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech. 13 (2011), no. 2, 295-305. https://doi.org/10.1007/s00021-009-0017-y
- X. Wu, Y. Yu, and Y. Tang, Global existence and asymptotic behavior for the 3D generalized Hall-MHD system, Nonlinear Anal. 151 (2017), 41-50. https://doi.org/10.1016/j.na.2016.11.010
- Z. Ye, Regularity criteria and small data global existence to the generalized viscous Hall-magnetohydrodynamics, Comput. Math. Appl. 70 (2015), no. 8, 2137-2154. https://doi.org/10.1016/j.camwa.2015.08.028
- Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincare Anal. Non Lineaire 24 (2007), no. 3, 491-505. https://doi.org/10.1016/j.anihpc.2006.03.014
- Y. Zhou, A remark on the decay of solutions to the 3-D Navier-Stokes equations, Math. Methods Appl. Sci. 30 (2007), no. 10, 1223-1229.