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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE

GENERALIZED MHD AND HALL-MHD SYSTEMS IN Rn

Mingxuan Zhu

Abstract. This paper deals with the asymptotic behavior of solutions to

the generalized MHD and Hall-MHD systems. Firstly, the upper bound
for the generalized MHD and Hall-MHD systems is investigated in L2

space. Then, the effect of the Hall term is analyzed. Finally, we optimize
the upper bound of decay and obtain their algebraic lower bound for the

generalized MHD system by using Fourier splitting method.

1. Introduction

We consider the following incompressible generalized MHD system:

ut + u · ∇u+ Λ2αu+∇P = B · ∇B,(1.1)

Bt + u · ∇B + Λ2βB = B · ∇u,(1.2)

div u = divB = 0,(1.3)

here u = u(x, t) ∈ Rn, B = B(x, t) ∈ Rn and P = P (x, t) ∈ R represent the
unknown velocity field, the magnetic field and the pressure, respectively. We

define Λ = (−∆)
1
2 in terms of Fourier transform by Λ̂f(ξ) = |ξ|f̂(ξ).

In [25], Wu obtained the existence of weak solutions for any u0, b0 ∈ L2(R3).
It was also shown that if α ≥ 1

2 + N
4 , α + β ≥ 1 + N

2 , then the solution
(u, b)(x, t) remains smooth for all time (see [25, 26] for details). The special
case α = β = 5

4 for 3D can also be found in [29] via a different approach. In
[8], it was proved that the system (1.1)-(1.4) is locally well-posed for any given
initial data u0, b0 ∈ Hs, s ≥ max{n2 + 1 − α, 1} (see [19] for classical MHD
system α = β = 1).

The generalized Hall-MHD system reads

ut + u · ∇u+ Λ2αu+∇P = (∇×B)×B,(1.4)

Bt −∇× (u×B) +∇× ((∇×B)×B) + Λ2βB = 0,(1.5)

div u = divB = 0.(1.6)
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Chae, Wan and Wu [4] proved the local well-posedness for the case α = 0
and β > 1

2 . Regularity criteria and global existence were studied in [11, 12,
20, 27, 28]. One can check that the generalized Hall-MHD system reduces to
the classical Hall-MHD system (1.1)-(1.3), when α = β = 1. Recently, there
have been extensive mathematical studies for the classical Hall-MHD system
[1–3, 5, 21–23]. In [1], the local existence and uniqueness of smooth solutions
were shown by Chae and his collaborators. They also established some blow-up
criteria in [1,2]. In [3], they proved that when (u0, B0) ∈ L2(R3)∩L1(R3), the

weak solutions satisfy ‖u‖L2 +‖B‖L2 ≤ C(1 + t)−
3
4 . Singularity formation was

investigated in [5]. In [23], Weng obtained the same space-time decay rates
as those of the heat equation. Based on the temporal decay results in [3],
he found that one could obtain weighted estimates of the magnetic field B by
direct weighted energy estimate, and then by regarding the magnetic convection
term as a forcing term in the velocity equations, Weng obtained the weighted
estimates for the vorticity, which yields the corresponding estimates for the
velocity field. In [22], upper and lower bounds on the decay of higher order
derivatives were obtained. In [2], Chae and Lee proved that if ‖u0‖

Ḣ
3
2

+‖b0‖
Ḣ

3
2

or ‖u0‖
Ḃ

1
2
2,1

+‖b0‖
Ḃ

1
2
2,1

is small enough, then the Hall MHD system has a unique

global classical solution. Ḃsp,q is the homogeneous Besov space. Later, Wan
and Zhou [21] improved the global existence for the Hall-MHD system provided
that the initial data ‖u0‖

Ḣ
1
2
+ε + ‖b0‖

Ḣ
3
2

or ‖u0‖
Ḃ

3
q
−1

q,1

+ ‖b0‖
Ḃ

3
q
−1

q,1 ∩Ḃ
3
q
q,1

is small

enough, where ε > 0, 1 < q <∞.
In this paper, we deal with the asymptotic behavior of the solutions to the

generalized MHD and Hall-MHD system by using Fourier splitting method.
The Fourier splitting method [13] was first applied to the parabolic conservation
laws to obtain algebraic energy decay rates. Then, it was used in the study
of the classical Navier-Stokes equations [6, 7, 9, 10, 14–18] and the references
therein. It is worth to point out that Zhou used a new method to get the
famous result in [30].

Throughout this paper, C denotes a generic positive constant (generally
large), it may be different from line to line. Our main results are stated as fol-
lows. The upper bound for the weak solution of generalized MHD is established
in L2 space.

Theorem 1.1. Assume vu and vB are the solutions to the generalized heat
equation vt + Λ2αv = 0 with the initial data u0 ∈ L2(Rn) and B0 ∈ L2(Rn),
and

‖vu‖2L2 ≤ C(1 + t)−θ1 , ‖vB‖2L2 ≤ C(1 + t)−θ2(1.7)

for some θ1, θ2 > 0. Then, for n ≥ 2 and α, β ∈ (0, n+2
4 ], there exists a weak

solution (u,B)(x, t) for the GMHD system, such that

‖u‖2L2 + ‖B‖2L2 ≤ C(1 + t)−θ0 , t ≥ 0(1.8)
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with θ0 = min{θ1, θ2,
n+2
2α ,

n+2
2β }.

The similar results can also be established for generalized Hall-MHD system.

Theorem 1.2. Assume vu and vB are the solutions to the generalized heat
equation vt + Λ2αv = 0 with the initial data u0 ∈ L2(Rn) and B0 ∈ L2(Rn),
and

‖vu‖2L2 ≤ C(1 + t)−θ1 , ‖vB‖2L2 ≤ C(1 + t)−θ2(1.9)

for some θ1, θ2 > 0. Then, for n ≥ 3 and α, β ∈ (0, n+2
4 ], there exists a weak

solution (u,B)(x, t) for the Hall-GMHD system, such that

‖u‖2L2 + ‖B‖2L2 ≤ C(1 + t)−θ0 , t ≥ 0(1.10)

with θ0 = min{θ1, θ2,
n+2
2α ,

n+2
2β }.

Remark 1.1. Similar result was established in [22] for the classical Hall-MHD
system. So Theorem 1.2 can be seem as a generalization. Some results for the
higher derivatives in different Sobolev spaces were obtained in [27].

Remark 1.2. It seems that the Hall term doesn’t affect the decay result. Ac-
tually, if we set the fluid velocity u ≡ 0, then the system reduce to

Bt +∇× ((∇×B)×B) + Λ2βB = 0.(1.11)

We can get the following decay result for (1.11):

Theorem 1.3. Assume vB is the solution to the generalized heat equation
vt + Λ2αv = 0 with the same initial data B0 ∈ L2(Rn), and

‖vB‖2L2 ≤ C(1 + t)−θ2(1.12)

for some θ2 > 0. Then, for n ≥ 3 and α, β ∈ (0, n+4
4 ], there exists a weak

solution B(x, t) for (1.11), such that

‖B‖2L2 ≤ C(1 + t)−θ0 , t ≥ 0(1.13)

with θ0 = min{θ2,
n+4
2β }.

It seems that the decay result for (1.11) is better than that for generalized
MHD and Hall-MHD systems.

Then, we optimize the upper bound for the strong solutions of the gen-
eralized MHD system and obtain their algebraic lower bound. Before going
to present the main result, we introduce the notation Rεµ = {u : |û(ξ)| ≥
µ for |ξ| ≤ ε} as that in [15].

Theorem 1.4. Assume α = β ∈ (0, n+2
4 ], n ≥ 2, vu and vB are the solutions to

the generalized heat equation vt+Λ2αv = 0 with the same initial data u0, B0 ∈
H1(Rn) ∩Rεµ for some µ, ε > 0, and

‖vu‖2L2 + ‖vB‖2L2 ≤M(1 + t)−
n
2α ,(1.14)
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where M are positive constants. Then, we have

C1(1 + t)−
n
2α ≤ ‖u‖2L2 + ‖B‖2L2 ≤ C2(1 + t)−

n
2α ,(1.15)

where C1, C2 are positive constants.

Remark 1.3. Unfortunately, due to the Hall term, we can’t get the similar result
for generalized Hall-MHD system. We hope some lower bound results can be
obtained for the generalized Hall-MHD system in the future. We are looking
forward to some results for α, β > 5

4 of both generalized MHD and Hall-MHD
systems.

Now, we list some notations that will be used in our paper. Use ‖u‖Lp to

denote the Lp(Rn) norm. Use f̂ to denote the Fourier transform of f .
The proof of our main results will be shown in Section 2.

2. Proof of the main results

2.1. Proof of Theorem 1.1

Multiplying on (1.1) and (1.2) by u and B, integration by parts, we get the
following energy equality

1

2

d

dt
(‖u‖2L2 + ‖B‖2L2) + ‖Λαu‖2L2 + ‖ΛβB‖2L2 = 0.(2.1)

By Plancherel’s theorem ‖f‖L2 = ‖f̂‖L2 and using Fourier splitting method,
we get

‖Λαu‖2L2 = ‖Λ̂αu‖2L2 =

∫
Rn
|ξ|2α|û|2dξ ≥ |r(t)|2α

∫
|ξ|≥r(t)

|û|2dξ

≥ |r(t)|2α
∫
Rn
|û|2dξ − |r(t)|2α

∫
|ξ|≤r(t)

|û|2dξ(2.2)

and

‖ΛβB‖2L2 =

∫
Rn
|ξ|2β |B̂|2dξ ≥ |s(t)|2β

∫
|ξ|≥s(t)

|B̂|2dξ

≥ |s(t)|2β
∫
Rn
|B̂|2dξ − |s(t)|2β

∫
|ξ|≤s(t)

|B̂|2dξ,(2.3)

here r(t) and s(t) will be chosen later. Combining (2.2) and (2.3) to (2.1), we
get

d

dt
(‖û‖2L2(t) + ‖B̂‖2L2(t)) + 2r(t)2α‖û‖2L2 + 2s(t)2β‖B̂‖2L2

≤ 2r(t)2α

∫
|ξ|≤r(t)

|û|2dξ + 2s(t)2β

∫
|ξ|≤s(t)

|B̂|2dξ.(2.4)

As the assumption, vu(x, t) is the solution of vt + Λ2αv = 0 with the initial
data u0(x) and vB(x, t) is the solution of vt + Λ2βv = 0 with the initial data
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B0(x). By direct computation, we have v̂u(ξ, t) = e−|ξ|
2αtû0(ξ) and v̂B(ξ, t) =

e−|ξ|
2βtB̂0(ξ).

From the generalized MHD equations, we get

û(ξ, t) = v̂u(ξ, t)−
∫ t

0

e−|ξ|
2α(t−s)(1− ξ⊗ξ

ξ2 ){ξ(û⊗ u)(ξ, s)− ξ(B̂ ⊗B)(ξ, s)}ds

and

B̂(ξ, t) = v̂B(ξ, t)−
∫ t

0

e−|ξ|
2β(t−s){ξ(û⊗B)(ξ, s)− ξ(B̂ ⊗ u)(ξ, s)}ds.

Then, we get

|û(ξ, t)| ≤ |v̂u(ξ, t)|+ |ξ|
∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

and

|B̂(ξ, t)| ≤ |v̂B(ξ, t)|+ |ξ|
∫ t

0

‖u‖2L2 + ‖B‖2L2dτ.

Therefore, it follows from (2.4) that

d

dt
(‖û‖2L2 + ‖B̂‖2L2)(t) + 2r(t)2α‖û‖2L2 + 2s(t)2β‖B̂‖2L2

≤ Cr(t)2α

[
‖v̂u‖2L2 + r(t)2+n

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2
]

+ Cs(t)2β

[
‖v̂B‖2L2 + s(t)2+n

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2
]
.(2.5)

Let r(t)2α = s(t)2β = 1
2(t+e) ln(t+e) . It yields

d

dt
[ln(t+ e)(‖û‖2L2 + ‖B̂‖2L2)(t)]

(2.6)

≤ C(t+ e)−1−θ1 + C(t+ e)−1−θ2 + C(t+ e)−1−n+2
2α

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2

+ C(t+ e)−1−n+2
2β

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2

.

By the energy estimate (2.1), one can get that ‖u‖2L2 + ‖B‖2L2 ≤ C. This is

enough for the case α, β ∈ (0, n+2
4 ). However, for the special case max{α, β} =

n+2
4 , from (2.6), one can’t get some decay property. So, we need the following

claim.
We claim that

‖u(s)‖2L2 + ‖B(s)‖2L2 ≤ C(1 + s)−%
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for some % > 0 when max{α, β} = n+2
4 . In order to prove the claim, we need

to show that

ln(t+ e)2(‖u‖2L2 + ‖B‖2L2) ≤ C.
Let r(t)2α = s(t)2β = 1

(t+e) ln(t+e) in (2.5). We get

d

dt
[ln(t+ e)2(‖û‖2L2 + ‖B̂‖2L2)]

≤ C
ln(t+ e)

t+ e

{
(t+ e)−θ1 + (t+ e)−θ2

+ (ln(t+ e)(t+ e))−
n+2
2α (

∫ t

0

‖u‖2L2 + ‖B‖2L2dτ)2

+ (ln(t+ e)(t+ e))−
n+2
2β (

∫ t

0

‖u‖2L2 + ‖B‖2L2dτ)2}.

Note that ‖u‖2L2 + ‖B‖2L2 is bounded, we have ln(t+ e)2(‖u‖2L2 + ‖B‖2L2) ≤ C.
It follows that∫ s

0

(‖u(τ)‖2L2 + ‖B(τ)‖2L2)dτ ≤ C3(s+ 1) ln(s+ e)−2.

Then, by the same argument as that in [24], we complete this claim.
Suppose that ‖u(s)‖2L2 +‖B(s)‖2L2 ≤ C(1+s)−% with % > 0 for max{α, β} =

n+2
4 and % ≥ 0 for α, β ∈ (0, n+2

4 ). From (2.6), we get

ln(t+ e)(‖û‖2L2 + ‖B̂‖2L2)(t)

≤ C(t+ e)−θ1 + C(t+ e)−θ2 + C(t+ e)−
n+2
2α +2−2% + C(t+ e)−

n+2
2β +2−2%,

which implies that

‖u‖2L2 + ‖B‖2L2 ≤ C(1 + t)−%̃,

with

%̃ = min{θ1, θ2,
n+ 2

2α
− 2 + 2%,

n+ 2

2β
− 2 + 2%}.

When max{α, β} = n+2
4 , if we start with % = 0, we would get %̃ = 0. This is

why we need the claim above.
Now, starting with the new exponent, and after finitely many iterations, we

get if θ ≤ 1, then ‖u‖2L2 +‖B‖2L2 ≤ C(1+ t)−θ. If θ > 1, then we have %̃ = 1+ε
with ε > 0. It follows ∫ s

0

‖u(τ)‖2L2 + ‖B(τ)‖2L2dτ ≤ C,

here C is without respect to the time s. By (2.6), we have

ln(t+ e)(‖û‖2L2 + ‖B̂‖2L2)(t)

≤ C(t+ e)−θ1 + C(t+ e)−θ2 + C(t+ e)−
n+2
2α + C(t+ e)−

n+2
2β .
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Which implies that

‖u‖2L2 + ‖B‖2L2 ≤ (1 + t)−θ0 for θ0 = min

{
θ1, θ2,

n+ 2

2α
,
n+ 2

2β

}
.

This complete the proof of Theorem 1.

2.2. Proof of Theorems 1.2 and 1.3

One can rewrite (1.4)-(1.6) as

ut + u · ∇u+ Λ2αu+∇(P +
|B|2

2
) = B · ∇B,

Bt + u · ∇B +∇× ((∇×B)×B) = B · ∇u− Λ2βB,

div u = divB = 0.

By the same argument, we get the following inequality for the generalized Hall-
GMHD system.

d

dt
(‖û‖2L2(t) + ‖B̂‖2L2(t)) + 2r(t)2α‖û‖2L2 + 2s(t)2β‖B̂‖2L2

≤ 2r(t)2α

∫
|ξ|≤r(t)

|û|2dξ + 2s(t)2β

∫
|ξ|≤s(t)

|B̂|2dξ.(2.7)

As the assumption, vu(x, t) is the solution of vt + Λ2αv = 0 with the initial
data u0(x) and vB(x, t) is the solution of vt + Λ2βv = 0 with the initial data

B0(x). By direct computation, we have v̂u(ξ, t) = e−|ξ|
2αtû0(ξ) and v̂B(ξ, t) =

e−|ξ|
2βtB̂0(ξ).

From the generalized Hall-MHD equations, we get

û(ξ, t) = v̂u(ξ, t)−
∫ t

0

e−|ξ|
2α(t−s)(1− ξ⊗ξ

ξ2 ){ξ(û⊗ u)(ξ, s)− ξ(B̂ ⊗B)(ξ, s)}ds

and

B̂(ξ, t) = v̂B(ξ, t)−
∫ t

0

e−|ξ|
2β(t−s){ξ(û⊗B)(ξ, s)− ξ(B̂ ⊗ u)(ξ, s)− ξ × (ξ · B̂ ⊗B)}ds),

which imply that

|û|(ξ, t) ≤ |v̂u(ξ, t)|+ |ξ|
∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

and

|B̂|(ξ, t) ≤ |v̂B(ξ, t)|+ |ξ|
∫ t

0

‖u‖2L2 + ‖B‖2L2dt+ |ξ|2
∫ t

0

‖B‖2L2dτ.

Therefore, it follows from (2.7) that

d

dt
(‖û‖2L2 + ‖B̂‖2L2)(t) + 2r(t)2α‖û‖2L2 + 2s(t)2β‖B̂‖2L2

(2.8)
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≤ Cr(t)2α

[
‖v̂u‖2L2 + r(t)2+n

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2
]

+ Cs(t)2β

[
‖v̂B‖2L2 + s(t)2+n

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2

+ s(t)4+n

(∫ t

0

‖B‖2L2dτ

)2
]
.

Let r(t)2α = s(t)2β = 1
2(t+e) ln(t+e) . Then s(t)2+n > s(t)4+n. It yields

d

dt
[ln(t+ e)(‖û‖2L2 + ‖B̂‖2L2)(t)]

≤ C(t+ e)−1−θ1 + C(t+ e)−1−θ2 + C(t+ e)−1−n+2
2α

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2

+ C(t+ e)−1−n+2
2β

(∫ t

0

‖u‖2L2 + ‖B‖2L2dτ

)2

.

By the same argument as the generalized MHD system, we complete the proof
of Theorem 1.2.

Now, we will show the proof of Theorem 1.3. For the system (1.11)

Bt +∇× ((∇×B)×B) + Λ2βB = 0,

let u ≡ 0, (2.8) can be reduced to

‖B̂‖2L2(t) + 2s(t)2β‖B̂‖2L2 ≤ s(t)4+n

(∫ t

0

‖B‖2L2dt

)2

.

Let s(t)2β = 1
2(t+e) ln(t+e) . We have

d

dt
[ln(t+ e)‖B̂‖2L2(t)] ≤ C(t+ e)−1−θ2 + C(t+ e)−1−n+4

2β

(∫ t

0

‖B‖2L2dt

)2

.

By the same discussion, we complete the proof of Theorem 1.3.

2.3. Proof of Theorem 1.4

In order to prove Theorem 1.4, we need the following lemma.

Lemma 2.1. Choosing T1 large enough and fixed (will be chosen later). Let
h1 and h2 be the solution to the generalized heat equation

ht + Λ2αh = 0

with the initial data h1(x, 0) = u(x, T1) and h2 = B(x, T1), respectively. For
t > T1, we have

C(δ)(1 + t)−
n
2α ≤ ‖h1‖2L2 + ‖h2‖2L2 ≤ C1(1 + t)−

n
2α ,

here C(δ) = δ2π
n
2

e2Γ(n2 +1) and δ = 1
2e
−1µ− C|ξ|.
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Proof. For |ξ| ≤ T−
1
2α

1 such that T1 ≥ max{ε−2α, 1}, we can directly compute

|û(ξ, T1)|

=

∣∣∣∣∣e−|ξ|2αT1 û0 −
∫ T1

0

e−|ξ|
2α(T1−s)(û · ∇u− B̂ · ∇B + ∇̂p)(ξ, s)ds

∣∣∣∣∣
≥
∣∣∣e−|ξ|2αT1 û0

∣∣∣− ∣∣∣∣∣∣
∫ T1

0

e−|ξ|
2α(T1−s)(

n∑
j=1

iξj ûju−
n∑
j=1

iξjB̂jB + iξ

n∑
i,j=1

ξiξj
|ξ|2

ûiuj)(ξ, s)ds

∣∣∣∣∣∣
≥
∣∣∣e−|ξ|2αT1 û0

∣∣∣− |ξ| ∣∣∣∣∣
∫ T1

0

‖ûju‖L∞ + ‖B̂jB‖L∞ + ‖ûiuj‖L∞ds

∣∣∣∣∣
≥
∣∣∣e−|ξ|2αT1 û0

∣∣∣− |ξ| ∣∣∣∣∣
∫ T1

0

‖u‖2L2 + ‖B‖2L2 + ‖u‖2L2ds

∣∣∣∣∣
≥
∣∣∣e−|ξ|2αT1 û0

∣∣∣− C|ξ| ∣∣∣∣∣
∫ T1

0

(1 + t)−
n
2α ds

∣∣∣∣∣
≥ e−1µ− C|ξ||(1 + T1)1− 3

2α − 1|.

For |ξ| ≤ T−
1
2α

1 , and T1 large enough, we can obtain

|û(ξ, T1)| ≥ 1

2
e−1µ− C|ξ| = δ.

Then

‖h1‖2L2 ≥
∫
|ξ|≤T

− 1
2α

1

e−2|ξ|2αt|û(ξ, T1)|2dξ ≥ δ2t−
n
2α

∫
|y|≤

√
t√
T1

e−2|y|2dy.

For t > T1, we have

‖h1‖2L2 ≥ δ2t−
n
2α

∫
|y|≤1

e−2|y|2dy ≥ C(δ)(1 + t)−
n
2α ,

here C(δ) = δ2π
n
2

e2Γ(n2 +1) .

Now we give the upper bound for ‖h1‖L2 . Due to the fact that

|ĥ1(ξ, t)| = |e−|ξ|
2αtû(ξ, T1)|

≤ |e−|ξ|
2α(t+T1)û0|+

∣∣∣∣∣e−|ξ|2αt
∫ T1

0

e−|ξ|
2α(T1−s)(û · ∇u+ B̂ · ∇B + ∇̂p)(ξ, s)ds

∣∣∣∣∣
≤ |e−|ξ|

2α(t+T1)û0|+ |Ce−|ξ|
2αtξ|,

we have

‖h1(·, t)‖L2 = ‖ĥ(ξ, t)‖L2

≤ C‖ĥ(t+ T1)‖L2 + C‖|ξ|e−|ξ|
2αt‖L2

≤ C(1 + t)−
n
4α .
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The estimate for h2 is almost same. So, we omit the details. �

Now, we give the proof of the main result. Set U1(x, t) = u(x, t + T1),
U2(x, t) = B(x, t + T1) and V1(x, t) = U1(x, t) − h1(x, t), V2(x, t) = U2(x, t) −
h2(x, t). Multiply both sides of the equation of V1, V2 by V1 V2, and integrate
over Rn, after suitable integration by parts, we obtain

d

dt
(‖V1(t)‖2L2 + ‖V2(t)‖2L2) + 2‖ΛαV1‖2L2 + 2‖ΛαV2‖2L2

= 2

∫
Rn
−U1 · ∇U1 · V1 + U2 · ∇U2 · V1 − U1 · ∇U2 · V2 + U2 · ∇U1 · V2dx

≤ 2(‖∇h1‖L∞ + ‖∇h2‖L∞)(‖U1‖2L2 + ‖U2‖2L2).

Using the Parseval’s equality, we have

d

dt
(‖V̂1(t)‖2L2 + ‖V̂2(t)‖2L2) + 2‖Λ̂αV 1‖2L2 + 2‖Λ̂αV 2‖2L2

= 2

∫
Rn
−U1 · ∇U1 · V1 + U2 · ∇U2 · V1 − U1 · ∇U2 · V2 + U2 · ∇U1 · V2dx

≤ 2(‖∇h1‖L∞ + ‖∇h2‖L∞)(‖U1‖2L2 + ‖U2‖2L2).

By the same argument as in (2.2), we known that

‖Λ̂αV 1‖2L2 + ‖Λ̂αV 2‖2L2

=

∫
Rn
|ξ|2α(|V̂1|2 + |V̂2|2)dξ ≥ |r(t)|2α

∫
|ξ|≥r(t)

(|V̂1|2 + |V̂2|2)dξ

≥ |r(t)|2α
∫
Rn

(|V̂1|2 + |V̂2|2)dξ − |r(t)|2α
∫
|ξ|≤r(t)

(|V̂1|2 + |V̂2|2)dξ.

Let r(t) = ( k
1+t )

1
2α . It follows that

d

dt
(‖V̂1(t)‖2L2 + ‖V̂2(t)‖2L2) +

k

1 + t
(‖V̂1‖2L2 + ‖V̂2‖2L2)(2.9)

≤ k

1 + t

∫
|ξ|≤r(t)

|V̂1(t)|2+ |V̂2(t)|2dξ+ 2(‖∇h1‖L∞+ ‖∇h2‖L∞)(‖U1‖2L2 + ‖U2‖2L2).

On the other hand, we have

V̂1(ξ, t) =

∫ t

0

e−|ξ|
2α(t−s)Ĥ(ξ, s)ds,

here

Ĥ(ξ, t) = − ̂U1 · ∇U1 + ̂U2 · ∇U2 − ∇̂P ,

which follows

|Ĥ(ξ, t)| ≤ C|ξ|(‖U1‖2L2 + ‖U2‖2L2).
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Thanks to the above inequality, we have

|V̂1(ξ, t)| ≤ C
∫ t

0

|ξ|(‖U1‖2L2 + ‖U2‖2L2)ds

≤ C|ξ|
∫ t+T1

T1

(‖u‖2L2 + ‖B‖2L2)ds

≤ C|ξ|(1 + T1)−
n
2α+1.

Inserting above inequality into the right hand side of (2.9), we can obtain

d

dt
[(1 + t)k(‖V̂1(t)]‖2L2 + ‖V̂2(t)]‖2L2)(2.10)

≤ C(1 + t)k−1−n+2
2α (1 + T1)−

n
α+2

+ 2(‖∇h1‖L∞ + ‖∇h2‖L∞)(‖U1‖2L2 + ‖U2‖2L2).

Before completing the proof, we need to show

‖∇h1‖L∞ ≤ ‖∇̂h1‖L1 ≤
∫
Rn
|ξ||ĥ1(

t− 1

2
)|e−|ξ|

2α t+1
2 dξ

≤ C‖ĥ1(
t− 1

2
)‖L2(1 + t)−

n+2
4α ≤ C(1 + t)−

n+1
2α .(2.11)

Similarly, we have

‖∇h2‖L∞ ≤ C(1 + t)−
n+1
2α .(2.12)

Combining (2.11) and (2.12) into (2.10) and choosing T1 large enough, we have

‖V1(·, t)‖2L2 + ‖V2(·, t)‖2L2 ≤
C(δ)

4
(1 + t)−

n
2α as t→∞.

Then, we can deduce

‖U1(·, t)‖2L2 + ‖U2(·, t)‖2L2 ≥
C(δ)

4
(1 + t)−

n
2α as t→∞.

This completes the proof of Theorem 1.4.
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