초고효율 III-V 화합물반도체 태양전지 연구동향 및 전망

  • 김영조 (한국나노기술원 소자기술개발본부) ;
  • 정상현 (한국나노기술원 소자기술개발본부) ;
  • 김현성 (한국나노기술원 소자기술개발본부) ;
  • 신은영 (한국나노기술원 소자기술개발본부) ;
  • 김창주 (한국나노기술원 융합공정기술본부) ;
  • 신현범 (한국나노기술원 융합공정기술본부) ;
  • 강호관 (한국나노기술원 소자기술개발본부)
  • 발행 : 2018.04.30

초록

III-V족 화합물반도체 기반의 다중접합 태양전지는 광전변환 효율이 매우 높고 내열, 내방사선 특성이 우수하여 인공위성이나 우주 탐사선의 태양광 패널에 주로 활용되어 왔다. 최근에는 III-V 태양전지의 활용범위가 지상 발전용으로 점차 확대되고 있으며, 가격 경쟁력 확보를 위한 고효율화 기술과 저가화 기술이 활발히 연구되고 있다. 본고에서는 현재 세계 최고 효율(46%)을 기록하고 있는 집광형 III-V 태양전지와 무인 항공기 및 전기 자동차의 보조 동력원으로 주목받고 있는 플렉시블 III-V 태양전지의 국내외 연구동향을 소개하고, 초고효율 III-V 태양전지의 향후 전망에 대해 논의하고자 한다.

키워드

참고문헌

  1. 정부 관계부처 합동, 제1차 기후변화대응 기본계획, p. 28, 2016.
  2. 정부 관계부처 합동, 재생에너지 3020 이행계획(안), p. 2, 2017.
  3. C. Honsberg, C. Bowden, PVCDROM. (http://www.pveducation.org/pvcdrom)
  4. M. A. Green et al., Solar cell efficiency tables (version 51), Prog. Photovolt: Res. Appl. 26, 3-12, 2018. https://doi.org/10.1002/pip.2978
  5. National Renewable Energy Laboratory. (http://www.nrel.gov/pv/assets/images/efficiency-chart.png).
  6. J. M. Woodall and H. J. Hovel, High-efficiency $Ga_1-_xAl_xAs-GaAs$ solar cells, Appl. Phys. Lett. 21, 379-381, 1972. https://doi.org/10.1063/1.1654421
  7. P. T. Chiu et al., Continued progress on direct bonded 5J space and terrestrial cells, Proceedings of the 40th IEEE Photovoltaic Specialists Conference, 2014.
  8. Press Release. Fraunhofer Institute for solar energy systems, 2014. (http://www.ise.fraunhofer.de/en)
  9. M. Bosi and C. Pelosi, The potential of III-V semiconductors as terrestrial photovoltaic devices, Prog. Photovolt: Res. Appl. 15, 51-68, 2007. https://doi.org/10.1002/pip.715
  10. Spectrolab Inc., a Boeing company. (https://www.spectrolab.com)
  11. Alta Devices Inc., a Hanergy company. (https://www.altadevices.com)
  12. Arzon Solar LLC. (http://arzonsolar.com)
  13. Suncore. (http://suncoreus.com)
  14. K. A. W. Horowitz et al., A Bottom-up Cost Analysis of a High Concentration PV Module, Proceedings of the 11th International Conference on Concentrator Photovoltaic Systems, 2015.
  15. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, p. 106, 2011: John Wiley & Sons, Ltd.
  16. S. R. Kurtz et al., Projected performance of three-and four-junction devices using GaAs and GalnP, Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997.
  17. E. F. Schubert, Light- Emitting Diodes, p. 206, 2005: Cambridge University Press.
  18. Solar Junction Corporation. (http://www.sj-solar.com)
  19. M. Wiemer, V. Sabnis, and H. Yuen, 43.5% Efficient Lattice Matched Solar Cells, Proceedings of SPIE 8108, 810804, 2011.
  20. K. Sasaki et al., Development of InGaP/GaAs/InGaAs Inverted Triple Junction Concentrator Solar Cells, Proceedings of the 9th International Conference on Concentrator Photovoltaic Systems, 2013.
  21. Sharp Corporation. (http://www.sharp-world.com/corporate/news/130614.html)
  22. National Renewable Energy Laboratory. (https://www.nrel.gov/news/press/2014/15436.html)
  23. R. M. France et al., Quadruple-Junction Inverted Metamorphic Concentrator Devices, IEEE J. Photovoltaics 5, 432-437, 2015. https://doi.org/10.1109/JPHOTOV.2014.2364132
  24. Fraunhofer ISE. (https://www.ise.fraunhofer.de/en/press-media/pressreleases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html)
  25. F. Dimroth et al., Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency, Prog. Photovolt: Res. Appl. 22, 277-282, 2014. https://doi.org/10.1002/pip.2475
  26. P. T. Chiu et al., 35.8% space and 38.8% terrestrial 5J direct bonded cells, Proceedings of the 40th IEEE Photovoltaic Specialists Conference, 2014.
  27. P. T. Chiu et al., High performance 5J and 6J direct bonded (SBT) space solar cells, Proceedings of the 42nd IEEE Photovoltaic Specialists Conference, 2015.
  28. Y. Kim et al., Efficiency Enhancement of InGaP/InGaAs/Ge Solar Cells with Gradually Doped P-N Junction Active Layers, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
  29. M. A. Green et al., Solar cell efficiency tables (version 49), Prog. Photovolt: Res. Appl. 25, 3-13, 2017. https://doi.org/10.1002/pip.2855
  30. C. W. Cheng et al., Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics, Nat. Commun. 4, 1577, 2013.
  31. B. M. Kayes et al., Flexible Thin-Film Tandem Solar Cells With >30% Efficiency, IEEE J. Photovoltaics 4, 729-733, 2014. https://doi.org/10.1109/JPHOTOV.2014.2299395
  32. Hanergy Holding Group Limited. (http://www.hanergy.com/en/content/details_37_3602.html)
  33. C. Youtsey et al., Epitaxial Lift-Off of Large-Area GaAs Thin-Film Multi-Junction Solar Cells, Proceedings of CS MANTECH Conference, 2012.
  34. J. Adams et al., Demonstration of multiple substrate reuses for inverted metamorphic solar cells, Proceedings of the 38th IEEE Photovoltaic Specialists Conference, 2012.
  35. MicroLink Devices Inc. (http://mldevices.com)
  36. C. Youtsey et al., High-efficiency and Light-weight Epitaxial Lift-off Multi-junction Solar Cells for Aerospace Applications, Proceedings of Global Photovoltaic Conference, 2018.
  37. M. Imaizumi et al., Qualification Test Results of IMM Triple-Junction Solar Cells, Space Solar Sheets, and Lightweight&Compact Solar Paddle, E3S Web of Conferences 16, 03012, 2017.
  38. Y. H. Lee et al., Fabrication and analysis of thin-film GaAs solar cell on flexible thermoplastic substrate using a low-pressure cold-welding, Curr. Appl. Phys. 15, 1312-1317, 2015. https://doi.org/10.1016/j.cap.2015.06.026
  39. S. M. Moon et al., Highly efficient single-junction GaAs thin-film solar cell on flexible substrate, Sci. Rep. 6, 30107, 2016 https://doi.org/10.1038/srep30107
  40. S. Moon et al., Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film, Curr. Photovoltaic Res. 4, 108-113, 2016 https://doi.org/10.21218/CPR.2016.4.3.108
  41. J. F. Geisz et al., Building a Six Junction Inverted Metamorphic Concentrator Solar Cell, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
  42. K. Lee et al., Non-Destructive Wafer Recycling for Low-Cost Thin-Film Flexible Optoelectronics, Adv. Funct. Mater. 24, 4284-4291, 2014. https://doi.org/10.1002/adfm.201400453
  43. K. L. Schulte et al., GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
  44. R. Oshima et al., Characterization of GaAs solar cells grown by hydride vapor phase epitaxy in horizontal reactor, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
  45. H. Sodabanlu et al., Extremely high-speed GaAs growth by MOVPE for low-cost PV application, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.