References
- 정부 관계부처 합동, 제1차 기후변화대응 기본계획, p. 28, 2016.
- 정부 관계부처 합동, 재생에너지 3020 이행계획(안), p. 2, 2017.
- C. Honsberg, C. Bowden, PVCDROM. (http://www.pveducation.org/pvcdrom)
- M. A. Green et al., Solar cell efficiency tables (version 51), Prog. Photovolt: Res. Appl. 26, 3-12, 2018. https://doi.org/10.1002/pip.2978
- National Renewable Energy Laboratory. (http://www.nrel.gov/pv/assets/images/efficiency-chart.png).
-
J. M. Woodall and H. J. Hovel, High-efficiency
$Ga_1-_xAl_xAs-GaAs$ solar cells, Appl. Phys. Lett. 21, 379-381, 1972. https://doi.org/10.1063/1.1654421 - P. T. Chiu et al., Continued progress on direct bonded 5J space and terrestrial cells, Proceedings of the 40th IEEE Photovoltaic Specialists Conference, 2014.
- Press Release. Fraunhofer Institute for solar energy systems, 2014. (http://www.ise.fraunhofer.de/en)
- M. Bosi and C. Pelosi, The potential of III-V semiconductors as terrestrial photovoltaic devices, Prog. Photovolt: Res. Appl. 15, 51-68, 2007. https://doi.org/10.1002/pip.715
- Spectrolab Inc., a Boeing company. (https://www.spectrolab.com)
- Alta Devices Inc., a Hanergy company. (https://www.altadevices.com)
- Arzon Solar LLC. (http://arzonsolar.com)
- Suncore. (http://suncoreus.com)
- K. A. W. Horowitz et al., A Bottom-up Cost Analysis of a High Concentration PV Module, Proceedings of the 11th International Conference on Concentrator Photovoltaic Systems, 2015.
- A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, p. 106, 2011: John Wiley & Sons, Ltd.
- S. R. Kurtz et al., Projected performance of three-and four-junction devices using GaAs and GalnP, Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997.
- E. F. Schubert, Light- Emitting Diodes, p. 206, 2005: Cambridge University Press.
- Solar Junction Corporation. (http://www.sj-solar.com)
- M. Wiemer, V. Sabnis, and H. Yuen, 43.5% Efficient Lattice Matched Solar Cells, Proceedings of SPIE 8108, 810804, 2011.
- K. Sasaki et al., Development of InGaP/GaAs/InGaAs Inverted Triple Junction Concentrator Solar Cells, Proceedings of the 9th International Conference on Concentrator Photovoltaic Systems, 2013.
- Sharp Corporation. (http://www.sharp-world.com/corporate/news/130614.html)
- National Renewable Energy Laboratory. (https://www.nrel.gov/news/press/2014/15436.html)
- R. M. France et al., Quadruple-Junction Inverted Metamorphic Concentrator Devices, IEEE J. Photovoltaics 5, 432-437, 2015. https://doi.org/10.1109/JPHOTOV.2014.2364132
- Fraunhofer ISE. (https://www.ise.fraunhofer.de/en/press-media/pressreleases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html)
- F. Dimroth et al., Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency, Prog. Photovolt: Res. Appl. 22, 277-282, 2014. https://doi.org/10.1002/pip.2475
- P. T. Chiu et al., 35.8% space and 38.8% terrestrial 5J direct bonded cells, Proceedings of the 40th IEEE Photovoltaic Specialists Conference, 2014.
- P. T. Chiu et al., High performance 5J and 6J direct bonded (SBT) space solar cells, Proceedings of the 42nd IEEE Photovoltaic Specialists Conference, 2015.
- Y. Kim et al., Efficiency Enhancement of InGaP/InGaAs/Ge Solar Cells with Gradually Doped P-N Junction Active Layers, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
- M. A. Green et al., Solar cell efficiency tables (version 49), Prog. Photovolt: Res. Appl. 25, 3-13, 2017. https://doi.org/10.1002/pip.2855
- C. W. Cheng et al., Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics, Nat. Commun. 4, 1577, 2013.
- B. M. Kayes et al., Flexible Thin-Film Tandem Solar Cells With >30% Efficiency, IEEE J. Photovoltaics 4, 729-733, 2014. https://doi.org/10.1109/JPHOTOV.2014.2299395
- Hanergy Holding Group Limited. (http://www.hanergy.com/en/content/details_37_3602.html)
- C. Youtsey et al., Epitaxial Lift-Off of Large-Area GaAs Thin-Film Multi-Junction Solar Cells, Proceedings of CS MANTECH Conference, 2012.
- J. Adams et al., Demonstration of multiple substrate reuses for inverted metamorphic solar cells, Proceedings of the 38th IEEE Photovoltaic Specialists Conference, 2012.
- MicroLink Devices Inc. (http://mldevices.com)
- C. Youtsey et al., High-efficiency and Light-weight Epitaxial Lift-off Multi-junction Solar Cells for Aerospace Applications, Proceedings of Global Photovoltaic Conference, 2018.
- M. Imaizumi et al., Qualification Test Results of IMM Triple-Junction Solar Cells, Space Solar Sheets, and Lightweight&Compact Solar Paddle, E3S Web of Conferences 16, 03012, 2017.
- Y. H. Lee et al., Fabrication and analysis of thin-film GaAs solar cell on flexible thermoplastic substrate using a low-pressure cold-welding, Curr. Appl. Phys. 15, 1312-1317, 2015. https://doi.org/10.1016/j.cap.2015.06.026
- S. M. Moon et al., Highly efficient single-junction GaAs thin-film solar cell on flexible substrate, Sci. Rep. 6, 30107, 2016 https://doi.org/10.1038/srep30107
- S. Moon et al., Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film, Curr. Photovoltaic Res. 4, 108-113, 2016 https://doi.org/10.21218/CPR.2016.4.3.108
- J. F. Geisz et al., Building a Six Junction Inverted Metamorphic Concentrator Solar Cell, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
- K. Lee et al., Non-Destructive Wafer Recycling for Low-Cost Thin-Film Flexible Optoelectronics, Adv. Funct. Mater. 24, 4284-4291, 2014. https://doi.org/10.1002/adfm.201400453
- K. L. Schulte et al., GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
- R. Oshima et al., Characterization of GaAs solar cells grown by hydride vapor phase epitaxy in horizontal reactor, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.
- H. Sodabanlu et al., Extremely high-speed GaAs growth by MOVPE for low-cost PV application, Proceedings of the 44th IEEE Photovoltaic Specialists Conference, 2017.