고효율 할로겐화 페로브스카이트 발광 다이오드의 최근 연구 동향

  • 배사랑 (중앙대학교 화학신소재공학부) ;
  • 쿠엣반 (중앙대학교 화학신소재공학부) ;
  • 김수영 (중앙대학교 화학신소재공학부)
  • Published : 2018.03.31

Abstract

Organic-inorganic halide perovskite materials have attracted significant attention during the last few years because of their superior properties for electronic and optoelectronic devices, such as their long charge carrier diffusion lengths and high photoluminescence quantum yields of up to 100% with tunable bandgaps over the entire visible spectral range. In addition to solar cells, light emitting diodes (LEDs) represent a fascinating application for halide perovskite materials. In this study, we review the recent progress in halide perovskite LEDs. The current strategies for improving the performance of halide LEDs, focusing on morphological engineering, dimensional engineering, compositional engineering, surface passivation, interfacial engineering, and the plasmonic effect are discussed. The challenges and perspectives for the future development of halide perovskite LEDs are also considered.

Keywords

References

  1. J. Chen, S. Zhou, S. Jin, H. Li, T. Zhai, J. Mater. Chem. C 2016, 4, 11. https://doi.org/10.1039/C5TC03417E
  2. W. Zhang, G. E. Eperon, H. J. Snaith, Nat. Energy. 2016, 1, 16048. https://doi.org/10.1038/nenergy.2016.48
  3. Q. V. Le, J. W. Shin, J.-H. Jung, J. Park, A. Ozturk, S. Y. Kim, J. Nanosci. Nanotechnol. 2017, 17, 8169. https://doi.org/10.1166/jnn.2017.15113
  4. M. Konstantakou, T. Stergiopoulos, J. Mater. Chem. A 2017, 5, 11518. https://doi.org/10.1039/C7TA00929A
  5. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, J. Mater. Chem. A 2015, 3, 8926. https://doi.org/10.1039/C4TA05033A
  6. F. Brivio, A. B. Walker, A. Walsh, APL Materials 2013, 1, 042111. https://doi.org/10.1063/1.4824147
  7. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050. https://doi.org/10.1021/ja809598r
  8. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, N.-G. Park, 2012, 2, 591. https://doi.org/10.1038/srep00591
  9. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376. https://doi.org/10.1126/science.aan2301
  10. K. C. Kwon, K. Hong, Q. V. Le, S. Y. Lee, J. Choi, K.-B. Kim, S. Y. Kim, H. W. Jang, Adv. Funct. Mater. 2016, 26, 4213. https://doi.org/10.1002/adfm.201600405
  11. H. Wang, D. H. Kim, Chem. Soc. Rev. 2017, 46, 5204. https://doi.org/10.1039/C6CS00896H
  12. I. Ka, L. F. Gerlein, R. Nechache, S. G. Cloutier, Sci. Rep. 2017, 7, 45543. https://doi.org/10.1038/srep45543
  13. L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, Y. Yang, Nat. Commun. 2014, 5, 5404. https://doi.org/10.1038/ncomms6404
  14. S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, H. Sirringhaus, Sci. Adv. 2017, 3.
  15. X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, C. Soci, Nat. Commun. 2015, 6, 7383. https://doi.org/10.1038/ncomms8383
  16. T. Matsushima, F. Mathevet, B. Heinrich, S. Terakawa, T. Fujihara, C. Qin, A. S. D. Sandanayaka, J.-C. Ribierre, C. Adachi, Appl. Phys. Lett. 2016, 109, 253301. https://doi.org/10.1063/1.4972404
  17. Y. Zhuang, W. Yuan, L. Qian, S. Chen, G. Shi, Phys. Chem. Chem. Phys. 2017, 19, 12876. https://doi.org/10.1039/C7CP01646H
  18. J. Choi, Q. V. Le, K. Hong, C. W. Moon, J. S. Han, K. C. Kwon, P.-R. Cha, Y. Kwon, S. Y. Kim, H. W. Jang, ACS Appl. Mater. Interfaces 2017, 9, 30764. https://doi.org/10.1021/acsami.7b08197
  19. Y. Liu, F. Li, Z. Chen, T. Guo, C. Wu, T. W. Kim, Vacuum 2016, 130, 109. https://doi.org/10.1016/j.vacuum.2016.05.010
  20. J.-Y. Seo, J. Choi, H.-S. Kim, J. Kim, J.-M. Yang, C. Cuhadar, J. S. Han, S.-J. Kim, D. Lee, H. W. Jang, N.-G. Park, Nanoscale 2017, 9, 15278. https://doi.org/10.1039/C7NR05582J
  21. B. Hwang, C. Gu, D. Lee, J.-S. Lee, Sci. Rep. 2017, 7, 43794. https://doi.org/10.1038/srep43794
  22. E. J. Yoo, M. Lyu, J.-H. Yun, C. J. Kang, Y. J. Choi, L. Wang, Adv. Mater. 2015, 27, 6170. https://doi.org/10.1002/adma.201502889
  23. J. S. Han, Q. V. Le, J. Choi, K. Hong, C. W. Moon, T. L. Kim, H. Kim, S. Y. Kim, H. W. Jang, Adv. Funct. Mater. 2018, in press, DOI: 10.1002/adfm. 201705783.
  24. Q. V. Le, M. Park, W. Sohn, H. W. Jang, S. Y. Kim, Adv. Electron. Mater 2017, 3, 1600448. https://doi.org/10.1002/aelm.201600448
  25. Q. V. Le, J. B. Kim, S. Y. Kim, B. Lee, D. R. Lee, J. Phys. Chem. Lett. 2017, 8, 4140. https://doi.org/10.1021/acs.jpclett.7b01709
  26. S. Adjokatse, H.-H. Fang, M. A. Loi, Mater. Today 2017, 20, 413. https://doi.org/10.1016/j.mattod.2017.03.021
  27. S. D. Stranks, H. J. Snaith, Nat. Nanotech. 2015, 10, 391. https://doi.org/10.1038/nnano.2015.90
  28. Y.-H. Kim, G.-H. Lee, Y.-T. Kim, C. Wolf, H. J. Yun, W. Kwon, C. G. Park, T. W. Lee, Nano Energy 2017, 38, 51. https://doi.org/10.1016/j.nanoen.2017.05.002
  29. M.-H. Park, S.-H. Jeong, H.-K. Seo, C. Wolf, Y.-H. Kim, H. Kim, J. Byun, J. S. Kim, H. Cho, T.-W. Lee, Nano Energy 2017, 42, 157. https://doi.org/10.1016/j.nanoen.2017.10.012
  30. Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 2015, 10, 355. https://doi.org/10.1016/j.nantod.2015.04.009
  31. F. Zabihi, M.-R. Ahmadian-Yazdi, M. Eslamian, Nanoscale Res. Lett. 2016, 11, 71. https://doi.org/10.1186/s11671-016-1259-2
  32. M. Liu, M. B. Johnston, H. J. Snaith, Nat. New Biol. 2013, 501, 395. https://doi.org/10.1038/nature12509
  33. G. Tong, X. Geng, Y. Yu, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, K. Chen, RSC Adv. 2017, 7, 18224. https://doi.org/10.1039/C7RA01430A
  34. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222. https://doi.org/10.1126/science.aad1818
  35. J. C. Yu, D. B. Kim, E. D. Jung, B. R. Lee, M. H. Song, Nanoscale 2016, 8, 7036. https://doi.org/10.1039/C5NR05604G
  36. F.-X. Yu, Y. Zhang, Z.-Y. Xiong, X.-J. Ma, P. Chen, Z.-H. Xiong, C.-H. Gao, Org. Electron. 2017, 50, 480. https://doi.org/10.1016/j.orgel.2017.08.026
  37. G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640. https://doi.org/10.1021/acs.nanolett.5b00235
  38. J. Li, S. G. R. Bade, X. Shan, Z. Yu, Adv. Mater. 2015, 27, 5196. https://doi.org/10.1002/adma.201502490
  39. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotech. 2014, 9, 687. https://doi.org/10.1038/nnano.2014.149
  40. N. K. Kumawat, A. Dey, K. L. Narasimhan, D. Kabra, ACS Photonics 2015, 2, 349. https://doi.org/10.1021/acsphotonics.5b00018
  41. Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S. H. Im, T.-W. Lee, Adv. Mater. 2015, 27, 1248. https://doi.org/10.1002/adma.201403751
  42. R. L. Z. Hoye, M. R. Chua, K. P. Musselman, G. Li, M.-L. Lai, Z.-K. Tan, N. C. Greenham, J. L. MacManus-Driscoll, R. H. Friend, D. Credgington, Adv. Mater. 2015, 27, 1414. https://doi.org/10.1002/adma.201405044
  43. J. Wang, N. Wang, Y. Jin, J. Si, Z.-K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311. https://doi.org/10.1002/adma.201405217
  44. S. G. R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, K. Hanson, T. Siegrist, C. Xu, Z. Yu, ACS Nano 2016, 10, 1795. https://doi.org/10.1021/acsnano.5b07506
  45. Y.-K. Chih, J.-C. Wang, R.-T. Yang, C.-C. Liu, Y.-C. Chang, Y.-S. Fu, W.-C. Lai, P. Chen, T.-C. Wen, Y.-C. Huang, C.-S. Tsao, T.-F. Guo, Adv. Mater. 2016, 28, 8687. https://doi.org/10.1002/adma.201602974
  46. X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai, D. Bian, S. Chen, K. Wang, X. W. Sun, Nano Energy 2017, 37, 40. https://doi.org/10.1016/j.nanoen.2017.05.005
  47. H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J.-M. Heo, S. Ahn, T.-W. Lee, Adv. Mater. 2017, 29, 1700579. https://doi.org/10.1002/adma.201700579
  48. L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. Yang, M. Wei, B. R. Sutherland, E. H. Sargent, J. You, Nat. Commun. 2017, 8, 15640. https://doi.org/10.1038/ncomms15640
  49. Z. Cheng, J. Lin, CrystEngComm 2010, 12, 2646. https://doi.org/10.1039/c001929a
  50. D. B. Mitzi, J. Chem. Soc., Dalton Trans. 2001, 1.
  51. D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nat. New Biol. 1994, 369, 467. https://doi.org/10.1038/369467a0
  52. J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. Garcia Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, J. Feldmann, Nano Lett. 2015, 15, 6521. https://doi.org/10.1021/acs.nanolett.5b02985
  53. M. Era, S. Morimoto, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1994, 65, 676. https://doi.org/10.1063/1.112265
  54. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, E. H. Sargent, Nat. Nanotech. 2016, 11, 872. https://doi.org/10.1038/nnano.2016.110
  55. S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, Q. Xiong, Adv. Opt. Mater. 2014, 2, 838. https://doi.org/10.1002/adom.201400106
  56. P. Tyagi, S. M. Arveson, W. A. Tisdale, J. Phys. Chem. Lett. 2015, 6, 1911. https://doi.org/10.1021/acs.jpclett.5b00664
  57. Y. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. Ma, H. Gao, Adv. Mater. 2016, 28, 305. https://doi.org/10.1002/adma.201503954
  58. S. Kumar, J. Jagielski, N. Kallikounis, Y.-H. Kim, C. Wolf, F. Jenny, T. Tian, C. J. Hofer, Y.-C. Chiu, W. J. Stark, T.-W. Lee, C.-J. Shih, Nano Lett. 2017, 17, 5277. https://doi.org/10.1021/acs.nanolett.7b01544
  59. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes, B. P. Rand, Nat. Photon. 2017, 11, 108. https://doi.org/10.1038/nphoton.2016.269
  60. N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photon. 2016, 10, 699. https://doi.org/10.1038/nphoton.2016.185
  61. L. N. Quan, Y. Zhao, F. P. Garcia de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan, H. Tan, J. Pan, M. Yuan, O. M. Bakr, Z. Lu, D. H. Kim, E. H. Sargent, Nano Lett. 2017, 17, 3701. https://doi.org/10.1021/acs.nanolett.7b00976
  62. J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, H. He, D. Di, C. Lin, Y. Cheng, J. Wang, Y. Jin, ACS Nano 2017, 11, 11100. https://doi.org/10.1021/acsnano.7b05191
  63. C. Qin, T. Matsushima, A. S. D. Sandanayaka, Y. Tsuchiya, C. Adachi, J. Phys. Chem. Lett. 2017, 8, 5415. https://doi.org/10.1021/acs.jpclett.7b02371
  64. Q. Wang, J. Ren, X.-F. Peng, X.-X. Ji, X.-H. Yang, ACS Appl. Mater. Interfaces 2017, 9, 29901. https://doi.org/10.1021/acsami.7b07458
  65. D. Liang, Y. Peng, Y. Fu, M. J. Shearer, J. Zhang, J. Zhai, Y. Zhang, R. J. Hamers, T. L. Andrew, S. Jin, ACS Nano 2016, 10, 6897. https://doi.org/10.1021/acsnano.6b02683
  66. S. Kumar, J. Jagielski, S. Yakunin, P. Rice, Y.-C. Chiu, M. Wang, G. Nedelcu, Y. Kim, S. Lin, E. J. G. Santos, M. V. Kovalenko, C.-J. Shih, ACS Nano 2016, 10, 9720. https://doi.org/10.1021/acsnano.6b05775
  67. Z. Chen, C. Zhang, X.-F. Jiang, M. Liu, R. Xia, T. Shi, D. Chen, Q. Xue, Y.-J. Zhao, S. Su, H.-L. Yip, Y. Cao, Adv. Mater. 2017, 29, 1603157. https://doi.org/10.1002/adma.201603157
  68. L. Cheng, Y. Cao, R. Ge, Y.-Q. Wei, N.-N. Wang, J.-P. Wang, W. Huang, Chin. Chem. Lett. 2017, 28, 29. https://doi.org/10.1016/j.cclet.2016.07.001
  69. Y. F. Ng, S. A. Kulkarni, S. Parida, N. F. Jamaludin, N. Yantara, A. Bruno, C. Soci, S. Mhaisalkar, N. Mathews, Chem. Commun. 2017, 53, 12004. https://doi.org/10.1039/C7CC06615E
  70. K. Akihiro, I. Masashi, T. Kenjiro, M. Tsutomu, Chem. Lett. 2012, 41, 397. https://doi.org/10.1246/cl.2012.397
  71. D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, M. V. Kovalenko, Nano Lett. 2016, 16, 5866. https://doi.org/10.1021/acs.nanolett.6b02688
  72. S. Demchyshyn, J. M. Roemer, H. GroiB, H. Heilbrunner, C. Ulbricht, D. Apaydin, A. Bohm, U. Rutt, F. Bertram, G. Hesser, M. C. Scharber, N. S. Sariciftci, B. Nickel, S. Bauer, E. D. Glowacki, M. Kaltenbrunner, Sci. Adv. 2017, 3.
  73. F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533. https://doi.org/10.1021/acsnano.5b01154
  74. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692. https://doi.org/10.1021/nl5048779
  75. D. Wang, D. Wu, D. Dong, W. Chen, J. Hao, J. Qin, B. Xu, K. Wang, X. Sun, Nanoscale 2016, 8, 11565. https://doi.org/10.1039/C6NR01915C
  76. J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162. https://doi.org/10.1002/adma.201502567
  77. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, H. Zeng, Adv. Mater. 2017, 29, 1603885. https://doi.org/10.1002/adma.201603885
  78. T. Chiba, K. Hoshi, Y.-J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata, J. Kido, ACS Appl. Mater. Interfaces 2017, 9, 18054. https://doi.org/10.1021/acsami.7b03382
  79. G. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. de la Pena, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, Z.-K. Tan, Adv. Mater. 2016, 28, 3528. https://doi.org/10.1002/adma.201600064
  80. X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, X. W. Sun, Adv. Funct. Mater. 2016, 26, 4595. https://doi.org/10.1002/adfm.201600958
  81. P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li, Y. Zeng, R. Pan, S. Chen, W. Cao, X. W. Sun, K. Wang, Chem. Mater. 2017, 29, 5168. https://doi.org/10.1021/acs.chemmater.7b00692
  82. X. Zhang, C. Sun, Y. Zhang, H. Wu, C. Ji, Y. Chuai, P. Wang, S. Wen, C. Zhang, W. W. Yu, J. Phys. Chem. Lett. 2016, 7, 4602. https://doi.org/10.1021/acs.jpclett.6b02073
  83. X. Zhang, B. Xu, W. Wang, S. Liu, Y. Zheng, S. Chen, K. Wang, X. W. Sun, ACS Appl. Mater. Interfaces 2017, 9, 4926. https://doi.org/10.1021/acsami.6b12450
  84. S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong, X. Chen, J. Am. Chem. Soc. 2017, 139, 11443. https://doi.org/10.1021/jacs.7b04000
  85. X. Zhang, W. Cao, W. Wang, B. Xu, S. Liu, H. Dai, S. Chen, K. Wang, X. W. Sun, Nano Energy 2016, 30, 511. https://doi.org/10.1016/j.nanoen.2016.10.039
  86. X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu, K. L. Karen, Y. Zheng, S. Liu, S. Chen, K. Wang, X. W. Sun, Adv. Mater. 2017, 29, 1606405. https://doi.org/10.1002/adma.201606405
  87. B. Xu, W. Wang, X. Zhang, W. Cao, D. Wu, S. Liu, H. Dai, S. Chen, K. Wang, X. Sun, J. Mater. Chem. C 2017, 5, 6123. https://doi.org/10.1039/C7TC01300K
  88. W. Deng, X. Xu, X. Zhang, Y. Zhang, X. Jin, L. Wang, S.-T. Lee, J. Jie, Adv. Funct. Mater. 2016, 26, 4797. https://doi.org/10.1002/adfm.201601054
  89. H. Huang, F. Zhao, L. Liu, F. Zhang, X.-g. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, ACS Appl. Mater. Interfaces 2015, 7, 28128. https://doi.org/10.1021/acsami.5b10373
  90. J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan, Q. Xiong, ACS Nano 2016, 10, 6623. https://doi.org/10.1021/acsnano.6b01540
  91. P. Chen, Z. Xiong, X. Wu, M. Shao, X. Ma, Z.-h. Xiong, C. Gao, J. Phys. Chem. Lett. 2017, 8, 1810. https://doi.org/10.1021/acs.jpclett.7b00368
  92. C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang, J. Mater. Chem. A 2014, 2, 18508. https://doi.org/10.1039/C4TA04007D
  93. A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Gratzel, Adv. Funct. Mater. 2014, 24, 3250. https://doi.org/10.1002/adfm.201304022
  94. H. Li, L. Tao, F. Huang, Q. Sun, X. Zhao, J. Han, Y. Shen, M. Wang, ACS Appl. Mater. Interfaces 2017, 9, 38967. https://doi.org/10.1021/acsami.7b10773
  95. W. Zhang, J. Xiong, L. Jiang, J. Wang, T. Mei, X. Wang, H. Gu, W. A. Daoud, J. Li, ACS Appl. Mater. Interfaces 2017, 9, 38467. https://doi.org/10.1021/acsami.7b10994
  96. M. Xu, J. Feng, X. L. Ou, Z. Y. Zhang, Y. F. Zhang, H. Y. Wang, H. B. Sun, IEEE Photonics J 2016, 8, 1.
  97. N. Tripathi, Y. Shirai, M. Yanagida, A. Karen, K. Miyano, ACS Appl. Mater. Interfaces 2016, 8, 4644. https://doi.org/10.1021/acsami.5b11286
  98. Y. Xing, C. Sun, H. L. Yip, G. C. Bazan, F. Huang, Y. Cao, Nano Energy 2016, 26, 7. https://doi.org/10.1016/j.nanoen.2016.04.057
  99. S. Lee, J. H. Park, B. R. Lee, E. D. Jung, J. C. Yu, D. Di Nuzzo, R. H. Friend, M. H. Song, J. Phys. Chem. Lett. 2017, 8, 1784. https://doi.org/10.1021/acs.jpclett.7b00372
  100. H. Sun, Z. Yang, M. Wei, W. Sun, X. Li, S. Ye, Y. Zhao, H. Tan, E. L. Kynaston, T. B. Schon, H. Yan, Z.-H. Lu, G. A. Ozin, E. H. Sargent, D. S. Seferos, Adv. Mater. 2017, 29, 1701153. https://doi.org/10.1002/adma.201701153
  101. N. Wang, L. Cheng, J. Si, X. Liang, Y. Jin, J. Wang, W. Huang, Appl. Phys. Lett. 2016, 108, 141102. https://doi.org/10.1063/1.4945330
  102. H. Choi, S.-J. Ko, Y. Choi, P. Joo, T. Kim, B. R. Lee, J.-W. Jung, H. J. Choi, M. Cha, J.-R. Jeong, I.-W. Hwang, M. H. Song, B.-S. Kim, J. Y. Kim, Nat. Photon. 2013, 7, 732. https://doi.org/10.1038/nphoton.2013.181
  103. M. Heo, H. Cho, J.-W. Jung, J.-R. Jeong, S. Park, J. Y. Kim, Adv. Mater. 2011, 23, 5689. https://doi.org/10.1002/adma.201103753
  104. X. Wu, L. Liu, W. C. H. Choy, T. Yu, P. Cai, Y. Gu, Z. Xie, Y. Zhang, L. Du, Y. Mo, S. Xu, Y. Ma, ACS Appl. Mater. Interfaces 2014, 6, 11001. https://doi.org/10.1021/am5033764
  105. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, J. X. Tang, Appl. Phys. Lett. 2012, 100, 013308. https://doi.org/10.1063/1.3675970
  106. C. Cho, H. Kang, S.-W. Baek, T. Kim, C. Lee, B. J. Kim, J.-Y. Lee, ACS Appl. Mater. Interfaces 2016, 8, 27911. https://doi.org/10.1021/acsami.6b07666
  107. X. Wu, Y. Zhuang, Z. Feng, X. Zhou, Y. Yang, L. Liu, Z. Xie, X. Chen, Y. Ma, Nano Res 2017.
  108. J. Wang, Y.-J. Lee, A. S. Chadha, J. Yi, M. L. Jespersen, J. J. Kelley, H. M. Nguyen, M. Nimmo, A. V. Malko, R. A. Vaia, W. Zhou, J. W. P. Hsu, J. Phys. Chem. C 2013, 117, 85. https://doi.org/10.1021/jp309415u
  109. H. Sung, J. Lee, K. Han, J.-K. Lee, J. Sung, D. Kim, M. Choi, C. Kim, Org. Electron. 2014, 15, 491. https://doi.org/10.1016/j.orgel.2013.11.038
  110. P. Chen, Z. Xiong, X. Wu, M. Shao, Y. Meng, Z.-h. Xiong, C. Gao, J. Phys. Chem. Lett. 2017, 8, 3961. https://doi.org/10.1021/acs.jpclett.7b01562
  111. F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Gratzel, A. Hagfeldt, S. Turri, C. Gerbaldi, Science 2016, 354, 203. https://doi.org/10.1126/science.aah4046
  112. Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen, B. Han, H. Zeng, J. Mater. Chem. C 2017, 5, 4565. https://doi.org/10.1039/C6TC05578H
  113. J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, H. Song, ACS Nano 2017, 11, 9294. https://doi.org/10.1021/acsnano.7b04683
  114. M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M. P. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu, S. Jin, J. Tang, Adv. Funct. Mater. 2017, in press, DOI: 10.1002/adfm.201704446.