복합화력발전소 동계운전시 백연방지 냉각탑 냉각수의 충전재 바이패스 비율 확인

The Cooling Water Bypass Ratio of Packing in Plume Abatement Cooling Tower of a Combined Cycle Power Plant During Winter Operation

  • 발행 : 2018.12.30

초록

본 연구에서는 복합화력발전소 백연방지 냉각탑의 동계운전시 백연발생을 방지하는 냉각수의 충전재 바이패스 비율이 설계치와 일치하는지에 대해 연구하였다. 29 Gcal/h 냉각용량인 백연방지 냉각탑의 운전 설계 습구온도는 $13^{\circ}C$에서 $-20^{\circ}C$ 범위이며, 이때 충전재 바이패스 비율 설계치는 0%에서 78 %로서, 외기온도 강하시 바이패스 비율 증가는 $2.36%/^{\circ}C$ 였다 발전소 정상운전 조건에서 냉각탑 유입공기의 습구온도가 $7.8^{\circ}C$에서 $-11.8^{\circ}C$ 범위에서의 실제 운전시 벡연방지를 위한 충전재 바이패스 비율은 23.8 %에서 74.3 % 범위로 측정되었다. 이때, 외기 습구온도 $7.8^{\circ}C$에서 $-9.55^{\circ}C$ 범위에서의 바이패스 비율 증가는 $2.71%/^{\circ}C$ 이었으며, 혹한기의 습구온도 $-10^{\circ}C$ 이하에서는 대기온도 강하에 따라 바이패스 비율 증가는 $1.61%/^{\circ}C$로 설계 대비 충전재 바이패스 비율 증가율이 감소되었음을 확인 하였다.

In this study, it was confirmed whether the cooling water bypass ratio of packing for plume abatement matched designed value during winter operation of combined cycle power plant. Designed operating wet bulb temperature of the plume abatement cooling tower with 29 Gcal/h capacity had a range from $13^{\circ}C$ to $-20^{\circ}C$, while its designed bypass ratio was from 0 % to 78%, so that increasing rate of the designed bypass ratio was $2.36%/^{\circ}C$ when the external temperature decreased. When the wet bulb temperature at cooling tower inlet had a range from $7.8^{\circ}C$ to $-11.8^{\circ}C$ in a normal operation, it was measured that actual bypass ratio of packing for plume abatement had a range from 23.8 % to 74.3%. While increasing rate of the actual bypass ratio was $2.71%/^{\circ}C$ in a range from $7.8^{\circ}C$ to $-9.55^{\circ}C$, it was $1.61%/^{\circ}C$ under $-10^{\circ}C$ in cold weather condition according to atmospheric temperature drop, therefore it was confirmed that the increasing rate of the bypass ratio for packing was lowered than its design.

키워드

참고문헌

  1. Korea Power Learning Institute, 2016, Basic Knowledge on Power Generation Vol III, Korea Power Learning Institute, pp. 138.
  2. S.K. Tyagi, A.K. Pandey, P.C. Pant, V.V. Tyagi, 2012, Formation, potential and abatement of plume from wet cooling towers : A review, Renewable and Sustainable Energy Reviews 16, pp. 3409-3429. https://doi.org/10.1016/j.rser.2012.01.059
  3. Han-Chun Lee, Kang-Hyun Bang, Mu-Han Kim, 1998, Experimetal Study on the Thermal Performance of a Cooling Tower, Korean journal of air conditioning and refrigerating engineering, Vol. 10, N0.1, pp. 88-94.