References
- J. Sercombe, E. Federici, M. Le Saux, B. Michel, C. Poussard, 1D and 3D modeling of PCMI during a RIA with ALCYONE V1.1, in: TopFuel 2010, Orlando, Florida, USA, 2010.
- B. Michel, J. Sercombe, C. Nonon, O. Fandeur, Modeling of pellet cladding interaction, in: R. Konings (Ed.), Compr. Nucl. Mater, Elsevier Ltd, 2012, pp. 677-712.
- J. Sercombe, T. Helfer, E. Federici, D. Leboulch, T. Le Jolu, A. Hellouin de Menibus, C. Bernaudat, 2D simulation of hydride blister cracking during a RIA transient with the fuel code ALCYONE, EPJ Nucl. Sci. Technol 2 (2016) 22. https://doi.org/10.1051/epjn/2016016
- Nuclear Fuel Behaviour under Reactivity-initiated Accident (RIA) Conditions: State-of-the-art Report, NEA/CSNI/R(2010)1, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2010.
-
V. Garat, J.-P. Mardon, K. McCoy, B. Dunn,
$M5^{(R)}$ fulfills the new requirements by regulators, in: TopFuel 2013, Charlotte, North Carolina, USA, 2013. - J. Papin, M. Petit, C. Grandjean, V. Georgenthum, IRSN R&D studies on high burn-up fuel behaviour under RIA and LOCA conditions, in: TopFuel 2006, Salamanca, Spain, 2006.
- T. Sugiyama, Y. Udagawa, T. Fuketa, Evaluation of initial temperature effect on transient fuel behavior under simulated reactivity-initiated accident conditions, J. Nucl. Sci. Technol. 47 (5) (2010) 439-448. https://doi.org/10.1080/18811248.2010.9711634
- J. Papin, B. Cazalis, J.-M. Frizonnet, J. Desquines, F. Lemoine, V. Georgenthum, F. Lamare, M. Petit, Summary and interpretation of the CABRI REP-Na program, Nucl. Technol. 157 (2007) 230-250. https://doi.org/10.13182/NT07-A3815
- T. Sugiyama, M. Umeda, Y. Udagawa, H. Sasajima, M. Suzuki, T. Fuketa, Applicability of NSRR room/high temperature test results to fuel safety evaluation under power reactor conditions, in: Nuclear Fuel Behavior during Reactivity Initiated Accidents, Paris, France, 2009; NEA/CSNI/R(2010)1, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2010.
- M. Le Saux, J. Besson, S. Carassou, C. Poussard, X. Averty, A model to describe the anisotropic viscoplastic mechanical behavior of fresh and irradiated Zircaloy-4 fuel claddings under RIA loading conditions, J. Nucl. Mater. 378 (2008) 60-69. https://doi.org/10.1016/j.jnucmat.2008.04.017
- B. Cazalis, J. Desquines, C. Poussard, M. Petit, Y. Monerie, C. Bernaudat, P. Yvon, X. Averty, The PROMETRA program: fuel cladding mechanical behavior under high strain rate, Nucl. Technol. 157 (2007) 215-229. https://doi.org/10.13182/NT07-A3814
-
B. Cazalis, C. Bernaudat, P. Yvon, J. Desquines, C. Poussard, X. Averty, The PROMETRA program: a reliable material database for highly irradiated zircaloy-4,
$ZIRLO^{TM}$ and$M5^{TM}$ fuel claddings, in: SMiRT18, Beijing, China, 2005. -
B. Cazalis, J. Desquines, T. Le Jolu, C. Bernaudat, The PROMETRA program: plane strain tests on fresh and highly irradiated Zircaloy-4,
$ZIRLO^{(R)}$ and$M5^{TM}$ fuel claddings, in: TopFuel 2016, Boise, Idaho, USA, 2016. - T. Forgeron, J.-C. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J.-P. Mardon,C. Bernaudat, Experiment and modeling of advanced fuel rod claddingbehavior under LOCA conditions: alpha/beta phase transformation kineticsand EDGAR methodology, in: Zirconium in the Nuclear Industry: TwelfthInternational Symposium, ASTM STP 1354, Toronto, Canada, 1998.
- T. Helfer, B. Michel, J.-M. Proix, M. Salvo, J. Sercombe, M. Casella, Introducingthe open-source mfront code generator: application to mechanical behavioursand material knowledge management within the PLEIADES fuel elementmodelling platform, Comput. Math. Appl. 70 (2015) 994-1023. https://doi.org/10.1016/j.camwa.2015.06.027
-
G. Jomard, C. Struzik, A. Boulore, P. Mailhe, V. Auret, R. Largenton, CARACAS:an industrial model for description of fission gas behavior in LWR-
$UO_2$ fuel,in: WRFPM 2014, Sendai, Japan, 2014. -
P. Goldbronn, J. Sercombe, B. Michel, Avancees de la simulation du comportement du combustible nucleaire en 3D et en transitoire rapide, in:
$21^{eme}$ Congres francais de mecanique, Bordeaux, France, 2013. - G. Geffraye, O. Antoni, M. Farvacque, D. Kadri, G. Lavialle, B. Rameau, A. Ruby, CATHARE 2 V2.5.2: a single version for various applications, Nucl. Eng. Des. 241 (2011) 4456-4463. https://doi.org/10.1016/j.nucengdes.2010.09.019
- V. Bessiron, Modelling of clad-to-coolant heat transfer for RIA applications, J. Nucl. Sci. Technol. 44 (2) (2007) 211-221. https://doi.org/10.1080/18811248.2007.9711275
- V. Bessiron, T. Sugiyama, T. Fuketa, Clad-to-coolant heat transfer in NSRR experiments, J. Nucl. Sci. Technol. 44 (2) (2007) 723-732. https://doi.org/10.1080/18811248.2007.9711861
- V. Georgenthum, T. Sugiyama, Influence of initial conditions on rod behavior during boiling crisis phase following a reactivity initiated accident, in: Nuclear Fuel Behavior during Reactivity Initiated Accidents, Paris, France, 2009; NEA/CSNI/R(2010)1, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2010.
- Reactivity Initiated Accident (RIA) Fuel Codes Benchmark Phase-II, Report - Volume 1, Simplified Cases Results, Summary and Analysis, NEA/CSNI/R(2016) 6/VOL1, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2016.
- A. Moal, V. Georgenthum, O. Marchand, SCANAIR: a transient fuel performance code - part one: general modelling description, Nucl. Eng. Des. 280 (2014) 150-171. https://doi.org/10.1016/j.nucengdes.2014.03.055
-
M. Salvo, J. Sercombe, J.-C. Menard, J. Julien, T. Helfer, T. Desoyer, Experimental characterization and modeling of
$UO_2$ behavior at high temperatures and high strain rates, J. Nucl. Mater. 456 (2015) 54-67. https://doi.org/10.1016/j.jnucmat.2014.09.024 -
M. Salvo, J. Sercombe, T. Helfer, P. Sornay, T. Desoyer, Experimental characterization and modeling of
$UO_2$ grain boundary cracking at high temperatures and high strain rates, J. Nucl. Mater. 460 (2015) 184-199. https://doi.org/10.1016/j.jnucmat.2015.02.018 - J. Papin, F. Lemoione, E. Federici, Main outcomes from the CABRI test results, in: NEA CSNI topical meeting on RIA fuel safety criteria, Aix-en-Provence, France, 2002; OECD Nuclear Energy Agency, NEA/CSNI/R(2003)8, Vol. 2, 61-81, 2003.
- F. Lemoine, High burnup fuel behavior related to fission gas effects under reactivity initiated accidents (RIA) conditions, J. Nucl. Mater. 248 (1997) 238-248. https://doi.org/10.1016/S0022-3115(97)00157-8
- J.-P. Hiernaut, T. Wiss, J.-Y. Colle, H. Thiele, C.T. Walker, W. Goll, R.J.M. Konings, Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen, J. Nucl. Mater. 377 (2008) 313-324. https://doi.org/10.1016/j.jnucmat.2008.03.006
- RIA Fuel Codes Benchmark - Volume 1, NEA/CSNI/R(2013)7, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2013.
- T. Tsuruta, T. Fujishiro, Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling, J. Nucl. Sci. Technol. 21 (7) (1984) 515-527. https://doi.org/10.1080/18811248.1984.9731077
- P. Ruyer, Clad to coolant heat transfer during RIA in PWR conditions, in: TopFuel 2016, Boise, Idaho, USA, 2016.
- A. Boulore, UAM-11 Workshop, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, Erlangen, Germany, 2017.
Cited by
- Modelling of fine fragmentation and fission gas release of UO2 fuel in accident conditions vol.5, pp.None, 2018, https://doi.org/10.1051/epjn/2019030
- Using laser remote heating to simulate extreme thermal heat loads on nuclear fuels vol.225, pp.None, 2018, https://doi.org/10.1051/epjconf/202022508002
- Simulation of reactivity initiated accident thermal transients on nuclear fuels with laser remote heating vol.530, pp.None, 2020, https://doi.org/10.1016/j.jnucmat.2019.151944
- Some Considerations on the Energy Deposition During a RIA Transient Based On Monte Carlo Simulations vol.253, pp.None, 2018, https://doi.org/10.1051/epjconf/202125304005
- Determination of the pressure in micrometric bubbles in irradiated nuclear fuels vol.543, pp.None, 2021, https://doi.org/10.1016/j.jnucmat.2020.152591
- Molecular dynamics study of UO 2 symmetric tilt grain boundaries around [001] axis vol.104, pp.6, 2021, https://doi.org/10.1111/jace.17736