DOI QR코드

DOI QR Code

Effect of Temperature on the Deposition Rate and Bending Strength Characteristics of Chemical Vapor Deposited Silicon Carbide Using Methyltrichlorosilane

메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향

  • Received : 2018.01.22
  • Accepted : 2018.04.28
  • Published : 2018.04.30

Abstract

The effects of deposition temperature on chemical vapor deposited silicon carbide (CVD-SiC) were studied to obtain high deposition rates and excellent bending strength characteristics. Silicon carbide prepared at $1250{\sim}1400^{\circ}C$ using methyltrichlorosilane(MTS : $CH_3SiCl_3$) by hot-wall CVD showed deposition rates of $95.7{\sim}117.2{\mu}m/hr$. The rate-limiting reaction showed the surface reaction at less than $1300^{\circ}C$, and the mass transfer dominant region at higher temperature. The activation energies calculated by Arrhenius plot were 11.26 kcal/mole and 4.47 kcal/mole, respectively. The surface morphology by the deposition temperature changed from $1250^{\circ}C$ pebble to $1300^{\circ}C$ facet structure and multi-facet structure at above $1350^{\circ}C$. The cross sectional microstructures were columnar at below $1300^{\circ}C$ and isometric at above $1350^{\circ}C$. The crystal phases were all identified as ${\beta}$-SiC, but (220) peak was observed from $1300^{\circ}C$ or higher at $1250^{\circ}C$ (111) and completely changed to (220) at $1400^{\circ}C$. The bending strength showed the maximum value at $1350^{\circ}C$ as densification increased at high temperatures and the microstructure changed from columnar to isometric. On the other hand, at $1400^{\circ}C$, the increasing of grain size and the direction of crystal growth were completely changed from (111) to (220), which is the closest packing face, so the bending strength value seems to have decreased.

화학기상증착 탄화규소(CVD-SiC)의 높은 증착율과 우수한 굽힘강도 특성을 얻기 위해 증착온도에 대한 영향을 연구하였다. Hot-wall CVD 방법으로 메틸트리클로로실란(MTS : $CH_3SiCl_3$)을 이용하여 $1250{\sim}1400^{\circ}C$ 조건에서 제조된 탄화규소는 $95.7{\sim}117.2{\mu}m/hr$ 정도의 증착율을 보였다. 율속반응은 $1300^{\circ}C$ 미만에서는 표면반응, 그 이상의 온도에서는 물질전달 지배영역 특성을 나타내었다. Arrhenius plot을 통해 계산한 활성화 에너지는 각각 11.26 kcal/mole과 4.47 kcal/mole이였다. 증착온도별 표면 형상은 $1250^{\circ}C$ pebble에서 $1300^{\circ}C$ facet 구조로 변하였고, $1350^{\circ}C$ 이상에서는 multi-facet 구조를 나타내었다. 단면 형상은 $1300^{\circ}C$ 이하에서 columnar, $1350^{\circ}C$ 이상에서 isometric 구조를 보였다. 결정상은 모두 ${\beta}$-SiC로 확인되었지만 결정성장 방향은 $1250^{\circ}C$ (111)에서 $1300^{\circ}C$ 이상부터 (220) peak가 관찰되었으며, $1400^{\circ}C$에서는 (220)으로 완전히 변함을 알 수 있었다. 굽힘강도 특성은 증착온도가 증가할수록 치밀화되고, columnar에서 isometric 조직으로 변화되면서 $1350^{\circ}C$에서 최대값을 나타내었으며, $1400^{\circ}C$에서는 grain size 증가와 결정성장 방향이 최밀충진면인 (111)에서 (220)으로 완전히 변하면서 감소된 것으로 보인다.

Keywords

References

  1. Kim, Y.W., Jang, S.H., Nishimura, T., Choi, S.Y., and Kim, S.D., "Microstructure and High-temperature Strength of Silicon Car- bide with 2000 ppm Yttria," Journal of the European Ceramic Society, Vol. 37, 2017, pp. 4449-4455. https://doi.org/10.1016/j.jeurceramsoc.2017.07.002
  2. Eichentopf, I.M., Bohm, G., and Arnold, T., "Etching Mecha- nisms during Plasma Jet Machining of Silicon Carbide," Surface & Coatings Technology, Vol. 205, 2011, pp. S430-S434. https://doi.org/10.1016/j.surfcoat.2011.03.003
  3. Yu, W., Wang, M., Xie, H., Hu, Y., and Chen, L., "Silicon Car- bide Nanowires Suspensions with High Thermal Transport Properties," Applied Thermal Engineering, Vol. 94, 2016, pp. 350-354. https://doi.org/10.1016/j.applthermaleng.2015.10.116
  4. Parshin, V., Serov, E., Denisov, G., Garin, B., Denisyuk, R., Vyu- ginov, V., Klevtsov, V., and Travin, N., "Silicon Carbide for High-power Applications at MM and THz Ranges," Diamond & Related Materials, Vol. 80, 2017, pp. 1-4. https://doi.org/10.1016/j.diamond.2017.09.007
  5. Kim, J.I., Park, I.S., and Joo, H.J., "Oxidation Behavior of SiC Coated Carbon/carbon Composite by Pack-cementation Method," Journal of the Korean Society for Composite Materials, Vol. 13, No. 2, 2000, pp. 22-29.
  6. Park, I.S., Oh, I.S., Kim, J.I., Joo, H.J., Son, W.K., and Kim, B.H., "Oxidation and Ablation Behavior of SiC-Coated Carbon/Car- bon Composites," Journal of the Korean Society for Composite Materials, Vol. 11, No. 4, 1998, pp. 64-73.
  7. Oh, J.H., Yang, C.H., Choi, D.J., and Song, H.S., "Fabrication of CVD SiC Double Layer Structure from the Microstructural Change Through Input Gas Ratio," Journal of the Korean Ceramic Society, Vol. 36, No. 9, 1999, pp. 937-945.
  8. Lee, Y.S., Yoo, S.G., and Lee, B.S., "Effects of CVD Parameters on Deposition Rate and Thin Film Characteristics of the Chemical Vapour Deposited SiC on C/C Composites," J. Korean Institute of Chemical Engineers, Vol. 33, No. 1, 1994, pp. 1-8.
  9. Kim, W.J., Park, J.Y., Kim, J.I., Hong, G.W., and Ha, J.W., "Deposition of Large Area SiC Thick Films by Low Pressure Chemical Vapor Deposition (LPCVD) Method," Journal of the Korean Ceramic Society, Vol. 38, No. 5, 2001, pp. 485-491.
  10. Kim, D.J., Lee, J.M., Kim, W.J., Yoon, S.G., and Park, J.Y., "Deposition of ${\beta}$-SiC by a LPCVD Method and the Effect of the Crystallographic Orientation on Mechanical Properties," Journal of the Korean Ceramic Society, Vol. 50, No. 1, 2013, pp. 43- 49. https://doi.org/10.4191/kcers.2013.50.1.43
  11. Lee, H.K., Kim, J.H., and Kim, D.K., "Mechanical Properties of Chemical Vapor Deposited SiC Coating Layer," Journal of the Korean Ceramic Society, Vol. 43, No. 8, 2006, pp. 492-497. https://doi.org/10.4191/KCERS.2006.43.8.492
  12. Choi, B.J., Park, D.W., Cho, M.C., and Kim, D.R., "Chemical Vapor Deposition of Silicon Carbide by the Pyrolysis of Meth- ylchlorosilanes," Journal of the Korean Ceramic Society, Vol. 32, No. 4, 1995, pp. 489-497.
  13. Lee, M.Y., Park, J.Y., Kim, W.J., Kim, J.I., Hong, G.W., and Yoon, S.G., "Effect of Total Reaction Pressure on the Microstructure of the SiC Deposited Layers by Low Pressure Chemical Vapor Deposition," Journal of the Korean Ceramic Society, Vol. 38, No. 4, 2001, pp. 388-392.
  14. Er, K.H., and So,, M.G., "Effect of Partial Pressure of the Reac- tant Gas on the Kinetic Model and Mechanical Properties of the Chemical Vapor Deposited Silicon Carbide," Journal of the Korean Ceramic Society, Vol. 28, No. 6, 1991, pp. 429-436.
  15. Kim, Y.K., Kim, W.J., Yeo, S.H., and Cho, M.S., "Effect of Depo- sition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels," Journal of Korean Powder Met- allurgy Institute, Vol. 23, No. 5, 2016, pp. 384-390. https://doi.org/10.4150/KPMI.2016.23.5.384
  16. Lee, Y.J., Wang, C.H., Choi, D.J., Park, J.Y., and Hong, G.W., "The Effect of Diluent Gases of $H_{2}$ or $N_{2}$ on the Growth Behav- ior of CVD SiC," Journal of the Korean Ceramic Society, Vol. 35, No. 7, 1998, pp. 764-774.
  17. Choi, D.J., and Kim, H.S., "The Effect of Diluent Gases on the Growh Behavior of CVD SiC," Journal of the Korean Ceramic Society, Vol. 34, No. 2, 1997, pp. 131-138.
  18. Neyret, E., Cioccio, L.D., Bluet, J.M., Pernot, J., Vicente, P., Anglos, D., Lagadas, M., and Billon, T., "Deposition, Evaluation and Control of 4H and 6H SiC Epitaxial Layers for Device Applications," Journal of Materials Science and Engineering, Vol. B80, 2001, pp. 332-336.
  19. Ryu, J.Y., "Silicon Carbide Components for a Semiconductor Manufacturing Process/Materials Technical Analysis Reports (in Korean)," pp. 24-39, KISTI, IOD Report (Serial#:4-0001) Seoul, 2005.
  20. Drieux, P., Chollon, G., Jacques, S., Couegnat, G., Jouannigot, S., and Weisbecker, P., "Synthesis and Characterization of Monolithic CVD-SiC Tubes," Journal of the European Ceramic Society, Vol. 36, 2016, pp. 1873-1883. https://doi.org/10.1016/j.jeurceramsoc.2016.02.024
  21. Cheng, H., Tu, R., Zhang, S., Han, M., Goto, T., and Zhang, L., "Preparation of Highly Oriented ${\beta}$-SiC Bulks by Halide Laser Chemical Vapor Deposition," Journal of the European Ceramic Society, Vol. 37, 2017, pp. 509-515. https://doi.org/10.1016/j.jeurceramsoc.2016.09.017
  22. Wellmann, P.J., Muller, R., Queren, D., Sakwe, S.A., and Pons, M., "Vapor Growth of SiC Bulk Crystals and Its Challenge of Doping," Surface & Coatings Technology, Vol. 201, 2006, pp. 4026-4031. https://doi.org/10.1016/j.surfcoat.2006.08.033
  23. Schuh, P., Scholer, M., Wilhelm, M., Syvajarvi, M., Litrico, G., La Via, F., Mauceri, M., and Wellmann, P.J., "Sublimation Growth of Bulk 3C-SiC using 3C-SiC-on-Si (100) Seeding Layers," Journal of Crystal Growth, Vol. 478, 2017, pp. 159-162. https://doi.org/10.1016/j.jcrysgro.2017.09.002
  24. Tokuda, Y., Makino, E., Sugjyama, N., Kamata, I., Hoshino, N., Kojima, J., Hara, K., and Tsuchida, H., "Stable and High-speed SiC Bulk Growth without Dendrites by the HTCVD Method," Journal of Crystal Growth, Vol. 448, 2016, pp. 29-35. https://doi.org/10.1016/j.jcrysgro.2016.03.046
  25. Thornton, J.A., "High Rate Thick Film Growth," Annual Review of Materials Science, 1977, pp. 239-260.