DOI QR코드

DOI QR Code

Solid-state sintering mechanism of blended elemental Ti-6Al-4V powders

  • Received : 2018.03.26
  • Accepted : 2018.04.13
  • Published : 2018.04.28

Abstract

The objective of this study is to reveal the sintering mechanism of mixed Ti-6Al-4V powders considering the densification and the homogenization between Ti and Al/V particles. It is found that the addition of master alloy particles into Ti enhances densification by the migration of Al into the Ti matrix prior to the self-diffusion of Ti. However, as Ti particles become coarser, sintering of the powders appears to be retarded due to slower inter-diffusion of the particles due to the reduced surface energies of Ti. Such phenomena are confirmed by a series of dilatometry tests and microstructural analyses in respect to the sintering temperature. Furthermore, the results are also consistent with the predicted activation energies for sintering. The energies are found to have decreased from 299.35 to $135.48kJ{\cdot}mol^{-1}$ by adding the Al/V particles because the activation energy for the diffusion of Al in ${\alpha}-Ti$ ($77kJ{\cdot}mol^{-1}$) is much lower than that of the self-diffusion of ${\alpha}-Ti$. The coarser Ti powders increase the energies from 135.48 to $181.16kJ{\cdot}mol^{-1}$ because the specific surface areas of Ti decrease.

Keywords

References

  1. F. Froes, D. Eylon, G. Eichelman and H. Burte: JOM, 32 (1980) 47. https://doi.org/10.1007/BF03354547
  2. F. Froes and D. Eylon: Powder Metall. Int., 17 (1985) 163.
  3. V. Moxson, O.N. Senkov and F. Froes: JOM, 52 (2000) 24.
  4. F. Froes, S. Mashl, J. Hebeisen, V. Moxson and V. Duz: JOM, 56 (2004) 46.
  5. F.S. Froes, M.N. Gungor and M.A. Imam, JOM, 59 (2007) 28.
  6. S. Abkowitz, S. Abkowitz and H. Fisher, Met. Powder Report, 66 (2011) 16.
  7. D.M. Bowden and W.H. Peter: Near-net shape fabrication using low-cost titanium alloy powders, in, The Boeing Company (2012).
  8. T. Fujita, A. Ogawa, C. Ouchi and H. Tajima: Mater. Sci. Eng. A, 213 (1996) 148. https://doi.org/10.1016/0921-5093(96)10232-X
  9. O.M. Ivasishin, V. Anokhin, A. Demidik and D.G. Savvakin: Key Eng. Mater., 188 (2000) 55. https://doi.org/10.4028/www.scientific.net/KEM.188.55
  10. O.M. Ivasishin, D.G. Savvakin, F.H.S. Froes and K.A. Bondareva: Powder Metall. Met. Ceramics, 41 (2002) 382. https://doi.org/10.1023/A:1021117126537
  11. L. Bolzoni, P. Esteban, E.M. Ruiz-Navas and E. Gordo: J. Mech. Behavior Biomed. Mater., 15 (2012) 33. https://doi.org/10.1016/j.jmbbm.2012.05.019
  12. Y. Kim, J. Lee, B. Lee, H.J. Ryu and S.H. Hong: Metall. Mater. Trans. A, 47 (2016) 4616. https://doi.org/10.1007/s11661-016-3607-3
  13. D. Delo and H. Piehler: Acta Mater., 47 (1999) 2841. https://doi.org/10.1016/S1359-6454(99)00132-9
  14. K. Zhang, J. Mei, N. Wain and X. Wu: Metall. Mater. Trans. A, 41 (2010) 1033.
  15. Y. Kim, E.-P. Kim, Y.-B. Song, S.H. Lee and Y.-S. Kwon: J. Alloys Compd., 603 (2014) 207. https://doi.org/10.1016/j.jallcom.2014.03.022
  16. R.P. Guo, L. Xu, J. Wu, Z.G. Lu and R. Yang: Mater. Sci. Forum, 849 (2016) 760. https://doi.org/10.4028/www.scientific.net/MSF.849.760
  17. A.M. Beese and B.E. Carroll: JOM, 68 (2016) 724. https://doi.org/10.1007/s11837-015-1759-z
  18. B. Dutta and F.H. Froes: Additive manufacturing of titanium alloys, Butterworth-Heinemann Limited (2016).
  19. T. Machry, D. Eatock, J. Meyer, A. Antonysamy, A. Ho and P. Prangnell: Powder Metall., 59 (2016) 41. https://doi.org/10.1080/00325899.2015.1123800
  20. T. Shimabukuro, R. Daouk, J. Skupnjak, M. Nordman, M. Burrell, L. Sutanto, A. Abad, H. Garmestani, N. Ula and J. Foyos: Defect Diffusion Forum, 367 (2016) 175. https://doi.org/10.4028/www.scientific.net/DDF.367.175
  21. G. Shibo, Q. Xuanhui, H. Xinbo, Z. Ting and D. Bohua: J. Mater. Proc. Tech., 173 (2006) 310. https://doi.org/10.1016/j.jmatprotec.2005.12.001
  22. O.M. Ferri, T. Ebel and R. Bormann: Mater. Sci. Eng. A, 504 (2009) 107. https://doi.org/10.1016/j.msea.2008.10.039
  23. G.C. Obasi, O.M. Ferri, T. Ebel and R. Bormann: Mater. Sci. Eng. A, 527 (2010) 3929. https://doi.org/10.1016/j.msea.2010.02.070
  24. R. German: Materials, 6 (2013) 3641. https://doi.org/10.3390/ma6083641
  25. S. Abkowitz, S. Abkowitz and H. Fisher: Titanium powder metallurgy, M. A. Qian and F. H. Froes (Ed.), Butter- worth-Heinemann, Oxford, United Kingdom (2015) 299.
  26. H. Wang, Z.Z. Fang and P. Sun: Int. J. Powder Metall., 46 (2010) 45.
  27. R.M. German: Powder Metallurgy and Particulate Materials Processing, New Jersey, U.S.A (2005) 93.
  28. M. Qian, Y.F. Yang, S.D. Luo and H.P. Tang: Titanium powder metallurgy, M. A. Qian and F. H. Froes (Ed.), Butterworth-Heinemann, Oxford, United Kingdom (2015) 201.
  29. O. Ivasishin: Mater. Sci. Forum, 624 (2005) 8.
  30. O.M. Ivasishin, D. Eylon, V. Bondarchuk and D.G. Savvakin: Defect and Diffusion Forum, 245 (2008) 177.
  31. D. Zhang, S. Raynova, V. Nadakuduru, P. Cao, B. Gabbitas and B. Robinson: Mater. Sci. Forum, 618-619 (2009) 513. https://doi.org/10.4028/www.scientific.net/MSF.618-619.513
  32. S.M. El-Soudani, K.-O. Yu, E.M. Crist, F. Sun, M.B. Campbell, T.S. Esposito, J.J. Phillips, V. Moxson and V.A. Duz: Metall. Mater. Trans. A, 44 (2013) 899. https://doi.org/10.1007/s11661-012-1437-5
  33. J.D. Paramore, Z. Zak Fang and P. Sun: Titanium powder metallurgy, M. A. Qian and F. H. Froes (Ed.), Butter- worth-Heinemann, Oxford, United Kingdom (2015) 163.
  34. M. Jia and B. Gabbitas: Key Eng. Mater., 704 (2016) 127.
  35. Y. Zheng, X. Yao, J. Liang and D. Zhang: Metall. Mater. Trans. A, 47 (2016) 1842. https://doi.org/10.1007/s11661-016-3333-x
  36. P. Sun, Z.Z. Fang and M. Koopman: Adv. Eng. Mater., 15 (2013) 1007.
  37. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.R. Chandran and M. Dunstan: Scripta Mater., 107 (2015) 103. https://doi.org/10.1016/j.scriptamat.2015.05.032
  38. P. Sun, Z.Z. Fang, M. Koopman, Y. Xia, J. Paramore, K.R. Chandran, Y. Ren and J. Lu: Metall. Mater. Trans. A, 46 (2015) 5546. https://doi.org/10.1007/s11661-015-3141-8
  39. O. Ivasishin and V. Moxson: Titanium powder metallurgy, M. A. Qian and F. H. Froes (Ed.), Butterworth-Heine- mann, Oxford, United Kingdom (2015) 117.
  40. B. Panigrahi, M. Godkhindi, K. Das, P. Mukunda, V. Dabhade and P. Ramakrishnan: J. Mater. Res., 20 (2005) 827. https://doi.org/10.1557/JMR.2005.0116
  41. D.L. Zhang, S. Raynova, V. Nadakuduru, P. Cao, B. Gabbitas and B. Robinson: Mater. Sci. Forum, 315 (2009) 513.
  42. G. Steedman and S. Corbin: Powder Metall., 58 (2015) 67. https://doi.org/10.1179/1743290114Y.0000000110
  43. M.I. Mendelson, J. Am. Ceram. Soc., 52 (1969) 443. https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
  44. F.F. Lange: J. Am. Ceram. Soc., 72 (1989) 3. https://doi.org/10.1111/j.1151-2916.1989.tb05945.x
  45. L. Pathak, S. Mishra, P. Mukunda, M. Godkhindi, D. Bhattacharya and K. Chopra: J. Mater. Sci., 29 (1994) 5455. https://doi.org/10.1007/BF01171561
  46. Z. Liu and G. Welsch: Metall. Trans. A, 19 (1988) 1121. https://doi.org/10.1007/BF02628396