References
- K. Eamonn, A. Mueen, "Curse of dimensionality", Encyclopedia of Machine Learning and Data Mining, Springer, pp.314-315, 2017.
- S. Bharat, N. Kushwaha, O. P. Vyas, "A feature subset selection technique for high dimensional data using symmetric uncertainty." Journal of Data Analysis and Information Processing,Vol. 2 No. 04, pp. 95, 2014. https://doi.org/10.4236/jdaip.2014.24012
- G. Isabelle, A. Elisseeff, "An introduction to variable and feature selection." Journal of machine learning research, Vol. 3, pp. 1157-1182, Mar, 2003.
- Q. Gu, Z. Li, J. Han, "Generalized fisher score for feature selection." arXiv preprint arXiv, 1202.3725, 2012.
- H. H. Hsu, C. W. Hsieh, M. D. Lu, "Hybrid feature selection by combining filters and wrappers." Expert Systems with Applications, Vol. 38, No. 7, pp. 8144-8150, 2011. https://doi.org/10.1016/j.eswa.2010.12.156
- Y. Lei, H. Liu, "Feature selection for high-dimensional data: A fast correlation-based filter solution." Proceedings of the 20th international conference on machine learning (ICML-03). 2003.
- Z. M. Hira, D. F. Gillies, "A review of feature selection and feature extraction methods applied on microarray data." Advances in bioinformatics 2015, 2015.
- L. Wang, Y. Wang, Q. Chang, "Feature selection methods for big data bioinformatics: A survey from the search perspective." Methods, Vol. 111, pp. 21-31, 2016. https://doi.org/10.1016/j.ymeth.2016.08.014
- N. A. Capela, E. D. Lemaire, N. Baddour, "Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients." PloS one, Vol. 10, No. 4, 2015.
- E. Guldogan, M. Gabbouj, "Feature Selection for Content-Based Image Retrieval", Signal, Image and Video Processing, Vol. 2, pp. 241-250, 2008. https://doi.org/10.1007/s11760-007-0049-9
- KNHANES, Available: https://knhanes.cdc.go.kr/knhanes/sub03/sub03_02_02.do
- R. Chakraborty, R. P. Nikhil, "Feature selection using a neural framework with controlled redundancy", IEEE transactions on neural networks and learning systems Vol. 26, No. 1, pp. 35-50, 2015. https://doi.org/10.1109/TNNLS.2014.2308902
- L. Yu, H. Liu, "Feature selection for high-dimensional data: a fast correlation-based filter solution", Proceedings of the 12th International Conference on Machine Learning, Washington, DC, USA, 2003.
- K. I. Kim, M. I. M. Ishag, M. Kim, J. S. Kim, and K. H. Ryu, "Proposal of a Resource-Monitoring Improvement System Using Amazon Web Service API." In Advances in Computer Science and Ubiquitous Computing, pp. 1103-1107, 2016
- S. Kweon, et al., "Data resource profile: the Korea national health and nutrition examination survey (KNHANES)", International journal of epidemiology, Vol. 43, No. 1, pp. 69-77, 2014. https://doi.org/10.1093/ije/dyt228
- C. B. Begg, A. B. Jesse, "Publication bias: a problem in interpreting medical data", Journal of the Royal Statistical Society. Series A (Statistics in Society), pp. 419-463, 1988.
- M. Piao, H. S. Shon, J. Y. Lee, and K. H. Ryu, "Subspace projection method based clustering analysis in load profiling", IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 2628-2635, 2014. https://doi.org/10.1109/TPWRS.2014.2309697
- M. E. A. Bashir, D. G. Lee, M. Li et al., "Trigger learning and ECG parameter customization for remote cardiac clinical care information system", IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 4, pp. 561-571, 2012. https://doi.org/10.1109/TITB.2012.2188812
- Y. Lee, Y. J. Jung, K. W. Nam, S. Nittel, K. Beard, and K. H. Ryu, "Geosensor data representation using layered slope grids", Sensors, vol. 12, no. 12, pp. 17074-17093, 2012. https://doi.org/10.3390/s121217074
- D. R. Cox, "The regression analysis of binary sequences (with discussion)", J Roy Stat Soc B. Vol. 20, pp. 215-242, 1958.
- S. Russell, P. Norvig, Artificial Intelligence: "A Modern Approach (2nd ed.)." Prentice Hall, 1995
- R. Pandya, P. Jayati, "C5. 0 algorithm to improved decision tree with feature selection and reduced error pruning", International Journal of Computer Applications Vol. 117, No. 16, 2015.
- J. R. Quinlan, "C4. 5: programs for machine learning." Elsevier, 2014.
- C. Cortes, V. Vapnik, "Support-vector networks", Machine learning, Vol. 20, No. 3, pp. 273-297, 1995. https://doi.org/10.1007/BF00994018
- T. Fawcett, "An Introduction to ROC Analysis", Pattern Recognition Letters, Vol. 27, No. 8, pp. 861-874, 2006. https://doi.org/10.1016/j.patrec.2005.10.010
- http://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
- A. V. Chobanian, G. L. Bakris, H. R. Black, et al., "Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure", Hypertension, Vol. 42, No. 6, pp. 1206-1252, 2003 https://doi.org/10.1161/01.HYP.0000107251.49515.c2
- T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley ed.), 1991.
- S. S. Kannan, N. Ramraj, "A Novel Hybrid Feature Selection via Symmetrical Uncertainty Ranking Based Local Memetic Search Algorithm", Knowledge-Based Systems, Vol. 23, pp. 580-585, 2010. https://doi.org/10.1016/j.knosys.2010.03.016
- M. A. Hall, "Correlation-based Feature Subset Selection for Machine Learning", Hamilton, New Zealand, 1998.
- S. Maldonado, R. Weber, and J. Basak, "Simultaneous feature selection and classification using kernel-penalized support vector machines", Information Sciences, vol. 181, no. 1, pp. 115-128, 2011. https://doi.org/10.1016/j.ins.2010.08.047
- H. Kim, M. I. M.Ishag, M. Piao, T. Kwon, and K. H. Ryu, "A data mining approach for cardiovascular disease diagnosis using heart rate variability and images of carotid arteries", Symmetry, vol. 8, no.6, 47, 2016. https://doi.org/10.3390/sym8060047
- P, Li, Y. Piao, H. S. Shon, K. H. Ryu, "Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data", BMC bioinformatics, , 16(1): 347, 2015. https://doi.org/10.1186/s12859-015-0778-7