DOI QR코드

DOI QR Code

Dose Assessment of the Eye of the Operator in the Field of Angiography and Interventional Radiography

혈관조영 및 중재적 시술 분야 내 종사자의 눈에 대한 선량평가

  • Kim, Jung-hoon (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Cho, Yong-In (Department of Radiology, Dongnam Institute of Radiological & Medical Sciences Cancer Center)
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 조용인 (동남권원자력의학원 영상의학과)
  • Received : 2018.02.25
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

In the field of angiography and interventional radiology, it is said that the risk of radiation exposure to the eyes is high due to the characteristics of work, but currently divided dose assessment and management are not carried out in reality. Therefore, in this study, in order to evaluate the dose of the operator in the surgical environment and to analyze the shields, firstly, we selected the point where the operator is mainly located, evaluated the exposure dose of the eye after attaching the pocket dosimeter to the lateral angle point of the head and neck phantom, and evaluate shielding effect when wearing lead glasses that is currently commercialized. Secondly, we evaluated the tendency of the exposure dose of the eye and the shielding effect through simulation in the same geometric structure as the actual measurement. As a result, in the case of measurement using a dosimeter, the cumulative dose increased with the increase of the fluoroscopic time, and the tendency was different according to the position of the operator. Simulation results show that the dose distribution of the eye lens in the mathematical phantom is about 1.1 ~ 1.3 times higher than that of the cornea. Also, The protective effect of the lead glasses showed a shielding effect of at least 3.7 ~ 21.4% in each eye.

혈관조영 및 중재적 방사선학 분야의 경우, 업무 특성상 눈의 방사선 피폭에 대한 위험성이 높다고 알려져 있으나, 현재 구분된 선량평가 및 관리가 이루어지지 않는 실정이다. 이에 본 연구에서는 시술 환경 내 종사자의 눈에 대한 선량평가 및 차폐분석을 위해 첫 번째로, 시술자가 주로 위치하는 지점을 선정하고, 두경부 팬텀 눈의 외안각 지점에 포켓선량계를 부착한 뒤 눈에 대한 피폭선량을 평가하였고, 현재 상용화된 납 안경 착용 시 차폐효과를 산정하였다. 두 번째로, 실측과 동일한 기하학적 구조 내 모의실험을 통해 눈의 피폭선량에 대한 경향성 평가와 차폐효과에 대해 분석하였다. 그 결과, 선량계를 이용한 측정의 경우, 방사선 투시촬영 시간이 증가함에 따라 누적선량이 증가하였고, 또한 시술자의 위치에 따라 각기 다른 양상을 보였다. 모의실험의 경우, 수학적 팬텀 내 눈의 수정체의 경우 각막보다 약 1.1 ~ 1.3배 높은 선량분포를 나타내는 것을 확인하였고, 납 안경의 방호효과는 눈의 각 기관별로 최소 3.7 ~ 최대 21.4% 차폐효과를 보였다.

Keywords

References

  1. Y. S. Do, "Evaluation of Radiation Exposure of Interventional Radiologist," Ministry of Food and Drug Safety, Study report, 2005.
  2. H. Jarvinen, N. Buls, P. Clerinx, J. Jansen, S. Miljanic, D. Nikodemova, M. Ranogajec-Komor, F. d'Errico, "Overview of double dosimetry procedures for the determination of the effective dose to the interventional radiology staff," Radiation protection dosimetry, Vol. 129, No. 1-3, pp. 333-339, 2008. https://doi.org/10.1093/rpd/ncn082
  3. Ministry of Food and Drug Safety, "Guidelines for Radiation Protection for Patient Dose Reduction in Interventional radiology," Radiation Safety Management Series, No. 36, 2014.
  4. Jack. Valentin, “Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85,” Annals of the ICRP, Vol. 30, No. 2, pp. 7-67, 2000. https://doi.org/10.1016/S0146-6453(01)00004-5
  5. D. H. Kim, S. H. Kim, Y. J. Lee, J. C. Lim, D. K. Han, "Study on Exposure Dose and Image Quality of Operator Using Shielding Material in Neuro Interventional Radiology," Journal of Korean Society Radiology, Vol. 11, No. 7, eISSN : 2384-0633, 2017.
  6. ICRP Publication 118, "ICRP Statement on Tissue Reactions and early and late effects of radiation in normal tissues and organs-threshold doses for tissue reactions in a radiation protection context," Annals of the ICRP, Vol. 41, No. 1-2, pp. 1-333, 2012. https://doi.org/10.1016/j.icrp.2012.02.001
  7. M. M. Rehani, “Eye dose assessment management: overview,” Radiation Protection Dosimetry, Vol. 165, No. 1-4, pp. 276-278, 2015. https://doi.org/10.1093/rpd/ncv048
  8. P. Bilski, J-M. Bordy, J. Daures, M. Denoziere, E. Fantuzzi, P. Ferrari, G. Gualdrini, M. Kopec, F. Mariotti, F. Monteventi, S. Wach, "The new EYE-D dosemetr for measurements of Hp(3) for medical staff," Radiation Measurement. Vol. 46, No. 11, pp. 1239-1242, 2011. https://doi.org/10.1016/j.radmeas.2011.04.031
  9. S. Mattsson, M. Soderberg, "Dose Quantities and Units for Radiation Protection," Radiation Protection in Nuclear Medicine, Springer Berlin Heidelberg, pp. 7-18, 2013.
  10. Y. I. Cho, S. Y. Ye, J. H. Kim, "Evaluation of the Apron Effectiveness during Handling Radiopharmace-uticals in PET/CT Work Environment," Journal of Radiological Science and Technology, Vol. 38, No.3, pp. 187-194, 2015. https://doi.org/10.17946/JRST.2015.38.3.01
  11. LANL, "User's manual version 2.5.0." Los Alamos National Laboratory, LA-CP-05-0369, 2005.
  12. R. Behrens, G. Dietze, M. Zankl, "Dose conversion coefficients for electron exposure of the human eye lens," Physics in medicine and biology. Vol. 54, pp.4069-4087, 2009. https://doi.org/10.1088/0031-9155/54/13/008
  13. N. Petoussi-Henss, W. E. Bolch, K. F. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl, "ICRP Publication 116. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures," Annals of the ICRP, Vol. 40, No. 2-5, pp. 1-257, 2010. https://doi.org/10.1016/j.icrp.2011.10.001
  14. M. Sans-Merce, N. Ruiz, I. Barth, "Recommendations to reduce hand exposure for standard nuclear medicine procedures," Radiation Measurements. Vol. 46, pp. 1330-1333, 2011. https://doi.org/10.1016/j.radmeas.2011.07.011
  15. Y. K. Lim, “Assessment of Occupational Dose to the Staff of Interventional Radiology Using Monte Carlo Simulations,” The Korean Association for Radiation Protection, Vol. 39, No. 4, pp. 213-217, 2014.
  16. P. Nogueira, M. Zankl, H. Schlattl, P. Vaz, "Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with differentlens cell populations," Physics in Medicine & Biology. Vol. 56, No. 21, pp. 6919-6934, 2011. https://doi.org/10.1088/0031-9155/56/21/010