DOI QR코드

DOI QR Code

Graphene Coated Acrylic Based Fabric Heaters

그래핀이 코팅된 아크릴 기반 발열 직물제조를 위한 연구

  • Noh, Sung Hyun (Department of Organic and Nano Engineering, Hanyang University) ;
  • Eom, Wonsik (Department of Organic and Nano Engineering, Hanyang University) ;
  • Ambade, Swapnil B. (Department of Organic and Nano Engineering, Hanyang University) ;
  • Kim, Sung Hoon (Department of Organic and Nano Engineering, Hanyang University) ;
  • Han, Tae Hee (Department of Organic and Nano Engineering, Hanyang University)
  • 노승현 (한양대학교 유기나노공학과) ;
  • 엄원식 (한양대학교 유기나노공학과) ;
  • ;
  • 김성훈 (한양대학교 유기나노공학과) ;
  • 한태희 (한양대학교 유기나노공학과)
  • Received : 2018.02.28
  • Accepted : 2018.04.15
  • Published : 2018.04.30

Abstract

A graphene-acrylic fabric electrothermal heater was fabricated through a simple and facile process, which can be easily implemented on a large scale, using graphene oxide solution and commercially available acrylic fabric. The electrothermal performances were evaluated in terms of the input current and input power density. The graphene oxide solution was coated on the acrylic fabric via a drop-casting method and was further reduced with hydroiodic acid at mild conditions ($80^{\circ}C$) for achieving electrical conductivity. Our graphene-acrylic fabric can generate heat at low voltages and exhibits good performance under bending conditions as well. These excellent results, combined with the facile process and wide availability of materials, indicate that graphene-acrylic fabric electrothermal heaters offer considerable potential for full-scale commercialization and applications related to heat-generating apparel or bedding fabrics.

Keywords

References

  1. C. Li, Y. T. Xu, B. Zhao, L. Jiang, S. G. Chen, J. B. Xu, X. Z. Fu, R. Sun, and C. P. Wong, "Flexible Graphene Electrothermal Films Made from Electrochemically Exfoliated Graphite", J. Mater. Sci., 2016, 51, 1043-1051. https://doi.org/10.1007/s10853-015-9434-x
  2. T. J. Kang, T. Kim, S. M. Seo, Y. J. Park, and Y. H. Kim, "Thickness-dependent Thermal Resistance of a Transparent Glass Heater with a Single-walled Carbon Nanotube Coating", Carbon, 2011, 49, 1087-1093. https://doi.org/10.1016/j.carbon.2010.11.012
  3. D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, "Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials", Small, 2011, 7, 3186-3192. https://doi.org/10.1002/smll.201101305
  4. X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes", Nano Lett., 2009, 9, 4359-4363. https://doi.org/10.1021/nl902623y
  5. J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, E. S. Kim, S. J. Chae, T. Q. Huy, N. V. Luan, and Y. H. Lee, "Heat Dissipation of Transparent Graphene Defoggers", Adv. Funct. Mater., 2012, 22, 4819-4826. https://doi.org/10.1002/adfm.201201155
  6. S. Y. Lin, T. Y. Zhang, Q. Lu, D. Y. Wang, Y. Yang, X. M. Wu, and T. L. Ren, "High-performance Graphene-based Flexible Heater for Wearable Applications", RSC Adv., 2017, 7, 27001-27006. https://doi.org/10.1039/C7RA03181E
  7. B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan, Q. Ji, and H. Jia, "Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame", ACS Appl. Mater. Interfaces, 2017, 37, 32054-32064.
  8. M. Zhang, C. Wang, X. Liang, Z. Yin, K. Xia, H. Wang, M. Jiang, and Y. Zhang, "Weft‐Knitted Fabric for a Highly Stretchable and Low‐Voltage Wearable Heater", Adv. Electron. Mater., 2017, 9, 1700193-1700200.
  9. M. Ramuz, B. C. K. Tee, J. B. H. Tok, and Z. N. Bao, "Transparent, Optical, Pressure-Sensitive Artificial Skin for Large-Area Stretchable Electronics", Adv. Mater., 2012, 24, 3223-3227. https://doi.org/10.1002/adma.201200523
  10. J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, "Graphene Oxide Liquid Crystals", Angew. Chem. Int. Edit., 2011, 50, 3043-3047. https://doi.org/10.1002/anie.201004692
  11. A. Kaniyoor and S. Ramaprabhu, "A Raman Spectroscopic Investigation of Graphite Oxide Derived Graphene", Aip Adv., 2012, 2, 032183. https://doi.org/10.1063/1.4756995
  12. A. C. Ferrari and D. M. Basko, "Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene", Nat. Nanotechnol., 2013, 8, 235-246. https://doi.org/10.1038/nnano.2013.46
  13. S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren, and H. M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 2010, 48, 4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006