DOI QR코드

DOI QR Code

Hydroxylation of Resveratrol with DoxA In Vitro: An Enzyme with the Potential for the Bioconversion of a Bioactive Stilbene

  • Rimal, Hemraj (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Yu, Sang-Cheol (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Lee, Joo-Ho (Genome-based BioIT Convergence Institute) ;
  • Yamaguchi, Tokutaro (Genome-based BioIT Convergence Institute) ;
  • Oh, Tae-Jin (Department of Life Science and Biochemical Engineering, Sunmoon University)
  • Received : 2017.11.27
  • Accepted : 2018.01.19
  • Published : 2018.04.28

Abstract

The late-stage doxorubicin biosynthesis pathway acting enzyme (DoxA) from Streptomyces peucetius CYP129A2 exhibited substrate promiscuity towards the stilbene group of compounds such as resveratrol. DoxA along with two accessory enzymes ferrdoxin reductase and ferredoxin from spinach hydroxylated resveratrol at the 3'-position in vitro to produce piceatannol. The product was identified by HPLC-PDA and high-resolution HR-qTOF-ESI/MS analyses in positive mode. The ESI/MS fragments resembled the hydroxylated product of resveratrol.

Keywords

References

  1. Sirerol JA, Rodriguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL. 2016. Role of natural stilbenes in the prevention of cancer. Oxid. Med. Cell Longev. 2016: 3128951.
  2. Lin Y, Yan Y. 2014. Biotechnological production of plant-specific hydroxylated phenylpropanoids. Biotechnol. Bioeng. 111: 1895-1899. https://doi.org/10.1002/bit.25237
  3. Brisdelli F, D'Andrea G, Bozzi A. 2009. Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr. Drug Metab. 10: 530-546. https://doi.org/10.2174/138920009789375423
  4. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, et al. 2002. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 86: 774-778. https://doi.org/10.1038/sj.bjc.6600197
  5. Piotrowska H, Kucinska M, Murias M. 2012. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat. Res. 750: 60-82. https://doi.org/10.1016/j.mrrev.2011.11.001
  6. Seyed MA, Jantan I, Bukhari SN, Vijayaraghavan KA. 2016. Comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem. 64: 725-737. https://doi.org/10.1021/acs.jafc.5b05993
  7. Furuya T, Sai M, Kino K. 2015. Biocatalytic synthesis of 3,4,5,3',5'-pentahydroxy-trans-stilbene from piceatannol by two-component flavin-dependent monooxygenase HpaBC. Biosci. Biotechnol. Biochem. 80: 193-198.
  8. Walczak RJ, Dickens ML, Priestley ND, Strohl WR. 1999. Purification, properties, and characterization of recombinant Streptomyces sp. strain C5 DoxA, a cytochrome P-450 catalyzing multiple steps in doxorubicin biosynthesis. J. Bacteriol. 181: 298-304.
  9. Dickens ML, Priestley ND, Strohl WR. 1997. In vivo and in vitro bioconversion of $\varepsilon$-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J Bacteriol. 179: 2641-2650. https://doi.org/10.1128/jb.179.8.2641-2650.1997
  10. Rimal H, Lee SW, Lee JH, Oh TJ. 2015. Understanding of real alternative redox partner of Streptomyces peucetius DoxA: prediction and validation using in silico and in vitro analyses. Arch. Biochem. Biophys. 585: 64-74. https://doi.org/10.1016/j.abb.2015.08.019
  11. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
  12. Stella L, De Rosso M, Panighel A, Vedova AD, Flamini R, Traldi P. 2008. Collisionally induced fragmentation of [M-H](-) species of resveratrol and piceatannol investigated by deuterium labelling and accurate mass measurements. Rapid Commun. Mass Spectrom. 22: 3867-3872. https://doi.org/10.1002/rcm.3811
  13. Bavaresco L, Fregoni M, Trevisan M, Mattivi F, Vrhovsek U, Falchetti R. 2002. The occurrence of the stilbene piceatannol in grapes. Vitis 41: 133-136.
  14. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, et al. 2018. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46: D608-D617. https://doi.org/10.1093/nar/gkx1089
  15. Khatri Y, Carius Y, Ringle M, Lancaster CR, Bernhardt R. 2016. Structural characterization of CYP260A1 from Sorangium cellulosum to investigate the $1{\alpha}$-hydroxylation of a mineralocorticoid. FEBS Lett. 590: 4638-4648. https://doi.org/10.1002/1873-3468.12479

Cited by

  1. Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents vol.27, pp.2, 2019, https://doi.org/10.4062/biomolther.2018.183
  2. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives vol.103, pp.7, 2018, https://doi.org/10.1007/s00253-019-09672-8
  3. Isolation and characterization of Gram-negative and Gram-positive bacteria capable of producing piceatannol from resveratrol vol.103, pp.14, 2018, https://doi.org/10.1007/s00253-019-09875-z
  4. Biotechnological Advances in Resveratrol Production and its Chemical Diversity vol.24, pp.14, 2018, https://doi.org/10.3390/molecules24142571
  5. Enhanced E/Z-photoisomerization and luminescence of stilbene derivative co-coordinated in di-β-diketonate lanthanide complexes vol.49, pp.46, 2018, https://doi.org/10.1039/d0dt03383a