References
- Jeong CH, Choi GN, Kim JH, Kwak JH, Kim DO, Kim YJ, et al. 2010. Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem. 118: 278-282. https://doi.org/10.1016/j.foodchem.2009.04.134
- Nyakudya E, Jeong JH, Lee NK, Jeong YS. 2014. Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev. Nutr. Food Sci. 19: 59-68. https://doi.org/10.3746/pnf.2014.19.2.059
- Park SJ, Al Mijan M, Song KB. 2014. Quality changes in Pteridium aquilinum and the root of Platycodon grandiflorum frozen under different conditions. Int. J. Refrig. 43: 90-96. https://doi.org/10.1016/j.ijrefrig.2014.04.004
- Lee JY, Hwang WI, Lim ST. 2004. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol. 93: 409-415. https://doi.org/10.1016/j.jep.2004.04.017
- Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663. https://doi.org/10.1111/1574-6976.12028
- Panicker G, Call DR, Krug MJ, Bej AK. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 7436-7444. https://doi.org/10.1128/AEM.70.12.7436-7444.2004
- Chen J, Zhang LD, Paoli GC, Shi CL, Tu SI, Shi XM. 2010. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137: 168-174. https://doi.org/10.1016/j.ijfoodmicro.2009.12.004
- Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, et al. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6: 271-279. https://doi.org/10.1016/0890-8508(92)90002-F
- Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. 2013. Metagenomics for pathogen detection in public health. Genome Med. 5: 81. https://doi.org/10.1186/gm485
- Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90. https://doi.org/10.1038/nature11237
- Asakura H, Tachibana M, Taguchi M, Hiroi T, Kurazono H, Makino SI, et al. 2016. Seasonal and growth-dependent dynamics of bacterial community in radish sprouts. J. Food Saf. 36: 392-401. https://doi.org/10.1111/jfs.12256
- Leff JW, Fierer N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8: e59310. https://doi.org/10.1371/journal.pone.0059310
- Tyler HL, Triplett EW. 2008. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu. Rev. Phytopathol. 46: 53-73. https://doi.org/10.1146/annurev.phyto.011708.103102
- Holden N, Pritchard L, Toth I. 2009. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev. 33: 689-703. https://doi.org/10.1111/j.1574-6976.2008.00153.x
- Kaestli M, Schmid M, Mayo M, Rothballer M, Harrington G, Richardson L, et al. 2012. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ. Microbiol. 14: 2058-2070. https://doi.org/10.1111/j.1462-2920.2011.02671.x
- Mikesell P, Ivins BE, Ristroph JD, Dreier TM. 1983. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39: 371-376.
- Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137-5142. https://doi.org/10.1093/nar/20.19.5137
- Felske A, Engelen B, Nubel U, Backhaus H. 1996. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 4162-4167.
- Samarakoon T, Wang SY, Alford MH. 2013. Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. Appl. Plant Sci. 1: apps.1200236.
- Ku HJ, Lee JH. 2014. Development of a novel long-range 16S rRNA universal primer set for metagenomic analysis of gastrointestinal microbiota in newborn infants. J. Microbiol. Biotechnol. 24: 812-822. https://doi.org/10.4014/jmb.1403.03032
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
- Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, et al. 2005. The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-D296.
- Hojati Z, Zamanzad B, Hashemzadeh M, Molaie R, Gholipour A. 2015. The FimH gene in uropathogenic Escherichia coli strains isolated from patients with urinary tract infection. Jundishapur J. Microbiol. 8: e17520.
- Tartof SY, Solberg OD, Riley LW. 2007. Genotypic analyses of uropathogenic Escherichia coli based on fimH single nucleotide polymorphisms (SNPs). J. Med. Microbiol. 56: 1363-1369. https://doi.org/10.1099/jmm.0.47262-0
- Brumbaugh AR, Mobley HL. 2012. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev. Vaccines 11: 663-676. https://doi.org/10.1586/erv.12.36
- Norton EB, Lawson LB, Mahdi Z, Freytag LC, Clements JD. 2012. The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect. Immun. 80: 2426-2435. https://doi.org/10.1128/IAI.00181-12
- Wu M, Li X. 2015. Klebsiella pneumoniae and Pseudomonas aeruginosa, pp. 1547-1564. In Tang Y-W, Sussman M, Liu DY, Poxton I, Schwartzman J (eds.). Molecular Medical Microbiology, 2nd Ed. Vol. 3. Elsevier, Netherlands.
- Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4: 551-560. https://doi.org/10.3201/eid0404.980405
- Ryan KJ, Ray CG, Sherris JC. 2004. Sherris Medical Microbiology: An Introduction to Infectious Diseases. Mc-Graw Hill, NY.
- Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, Yoon SS, et al. 2002. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54: 1425-1443. https://doi.org/10.1016/S0169-409X(02)00152-7
- Reddy PP. 2014. Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Springer, New Delhi.
- Pal A. 2016. A comparative primary structure analysis of phosphofructokinase from different plant pathogenic bacteria. Int. J. Adv. Res. Biol. Sci. 3: 1-7.
- Jun SR, Wassenaar TM, Nookaew I, Hauser L, Wanchai V, Land M, et al. 2015. Diversity of Pseudomonas genomes, including Populus-associated isolates, as revealed by comparative genome analysis. Appl. Environ. Microbiol. 82: 375-383.
- Brodey CL, Rainey PB, Tester M, Johnstone K. 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol. Plant Microbe Interact. 4: 407-411. https://doi.org/10.1094/MPMI-4-407
- Young JM. 1970. Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n.sp. N. Z. J. Agric. Res. 13: 977-990. https://doi.org/10.1080/00288233.1970.10430530
- Preston GM. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 907-918. https://doi.org/10.1098/rstb.2003.1384
- Mahlen SD. 2011. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 24: 755-791. https://doi.org/10.1128/CMR.00017-11
- Cohen PS, Maguire JH, Weinstein L. 1980. Infective endocarditis caused by gram-negative bacteria: a review of the literature, 1945-1977. Prog. Cardiovasc. Dis. 22: 205-242. https://doi.org/10.1016/0033-0620(80)90010-9
- Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ. 2011. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193: 6057-6069. https://doi.org/10.1128/JB.05671-11
- Epstein E. 2015. Disposal and Management of Solid Waste Pathogens and Disease. Taylor Francis Group, LLC. Abingdon, UK.
- Cruz AT, Cazacu AC, Allen CH. 2007. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45: 1989-1992. https://doi.org/10.1128/JCM.00632-07
- Monier JM, Lindow SE. 2005. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49: 343-352. https://doi.org/10.1007/s00248-004-0007-9
- Cunningham DJ, Marcon MJ. 2012. Enterobacter, Cronobacter, and Pantoea species, pp. 804-806. In Long S, Pickering L, Prober C (eds.). Principles and Practice of Pediatric Infectious Diseases, 4th Ed. Chpt. 140. Saunders Imprint, Philadelphia.
- Nedwell DB. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101-111. https://doi.org/10.1111/j.1574-6941.1999.tb00639.x
- Watterworth L, Topp E, Schraft H, Leung KT. 2005. Multiplex PCR-DNA probe assay for the detection of pathogenic Escherichia coli. J. Microbiol. Methods 60: 93-105. https://doi.org/10.1016/j.mimet.2004.08.016
- Wieler LH, Vieler E, Erpenstein C, Schlapp T, Steinruck H, Bauerfeind R, et al. 1996. Shiga toxin-producing Escherichia coli strains from bovines: association of adhesion with carriage of eae and other genes. J. Clin. Microbiol. 34: 2980-2984.
- Vidotto MC, Gaziri LC, Delicato ER. 2004. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis: correction. Vet. Microbiol. 102: 95-96. https://doi.org/10.1016/j.vetmic.2004.06.001
- Czeczulin JR, Collie RE, McClane BA. 1996. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens. Infect. Immun. 64: 3301-3309.
- Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189. https://doi.org/10.1128/AEM.67.1.185-189.2001
- Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR. 1991. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 29: 426-430.
- Csordas AT, Barak JD, Delwiche MJ. 2004. Comparison of primers for the detection of Salmonella enterica serovars using real-time PCR. Lett. Appl. Microbiol. 39: 187-193. https://doi.org/10.1111/j.1472-765X.2004.01559.x
Cited by
- Optimization of xylanase from Pseudomonas mohnii isolated from Simlipal Biosphere Reserve, Odisha, using response surface methodology vol.18, pp.1, 2018, https://doi.org/10.1186/s43141-020-00099-7