DOI QR코드

DOI QR Code

Analysis of Microbiota in Bellflower Root, Platycodon grandiflorum, Obtained from South Korea

  • Kim, Daeho (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ;
  • Hong, Sanghyun (Department of Animal Resources Science, Dankook University) ;
  • Na, Hongjun (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ;
  • Chun, Jihwan (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ;
  • Guevarra, Robin B. (Department of Animal Resources Science, Dankook University) ;
  • Kim, You-Tae (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University) ;
  • Ryu, Sangryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ;
  • Kim, Hyeun Bum (Department of Animal Resources Science, Dankook University) ;
  • Lee, Ju-Hoon (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)
  • Received : 2017.12.12
  • Accepted : 2018.02.13
  • Published : 2018.04.28

Abstract

Bellflower root (Platycodon grandiflorum), which belongs to the Campanulaceae family, is a perennial grass that grows naturally in Korea, northeastern China, and Japan. Bellflower is widely consumed as both food and medicine owing to its high nutritional value and potential therapeutic effects. Since foodborne disease outbreaks often come from vegetables, understanding the public health risk of microorganisms on fresh vegetables is pivotal to predict and prevent foodborne disease outbreaks. We investigated the microbial communities on the bellflower root (n = 10). 16S rRNA gene amplicon sequencing targeting the V6-V9 regions of 16S rRNA genes was conducted via the 454-Titanium platform. The sequence quality was checked and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using the weighted Fast UniFrac distance. The average number of sequence reads generated per sample was 67,192 sequences. At the phylum level, bacterial communities from the bellflower root were composed primarily of Proteobacteria, Firmicutes, and Actinobacteria in March and September samples. Genera Serratia, Pseudomonas, and Pantoea comprised more than 54% of the total bellflower root bacteria. Principal coordinate analysis plots demonstrated that the microbial community of bellflower root in March samples was different from those in September samples. Potential pathogenic genera, such as Pantoea, were detected in bellflower root samples. Even though further studies will be required to determine if these species are associated with foodborne illness, our results indicate that the 16S rRNA gene-based sequencing approach can be used to detect pathogenic bacteria on fresh vegetables.

Keywords

References

  1. Jeong CH, Choi GN, Kim JH, Kwak JH, Kim DO, Kim YJ, et al. 2010. Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem. 118: 278-282. https://doi.org/10.1016/j.foodchem.2009.04.134
  2. Nyakudya E, Jeong JH, Lee NK, Jeong YS. 2014. Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev. Nutr. Food Sci. 19: 59-68. https://doi.org/10.3746/pnf.2014.19.2.059
  3. Park SJ, Al Mijan M, Song KB. 2014. Quality changes in Pteridium aquilinum and the root of Platycodon grandiflorum frozen under different conditions. Int. J. Refrig. 43: 90-96. https://doi.org/10.1016/j.ijrefrig.2014.04.004
  4. Lee JY, Hwang WI, Lim ST. 2004. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol. 93: 409-415. https://doi.org/10.1016/j.jep.2004.04.017
  5. Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663. https://doi.org/10.1111/1574-6976.12028
  6. Panicker G, Call DR, Krug MJ, Bej AK. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 7436-7444. https://doi.org/10.1128/AEM.70.12.7436-7444.2004
  7. Chen J, Zhang LD, Paoli GC, Shi CL, Tu SI, Shi XM. 2010. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137: 168-174. https://doi.org/10.1016/j.ijfoodmicro.2009.12.004
  8. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, et al. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6: 271-279. https://doi.org/10.1016/0890-8508(92)90002-F
  9. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. 2013. Metagenomics for pathogen detection in public health. Genome Med. 5: 81. https://doi.org/10.1186/gm485
  10. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90. https://doi.org/10.1038/nature11237
  11. Asakura H, Tachibana M, Taguchi M, Hiroi T, Kurazono H, Makino SI, et al. 2016. Seasonal and growth-dependent dynamics of bacterial community in radish sprouts. J. Food Saf. 36: 392-401. https://doi.org/10.1111/jfs.12256
  12. Leff JW, Fierer N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8: e59310. https://doi.org/10.1371/journal.pone.0059310
  13. Tyler HL, Triplett EW. 2008. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu. Rev. Phytopathol. 46: 53-73. https://doi.org/10.1146/annurev.phyto.011708.103102
  14. Holden N, Pritchard L, Toth I. 2009. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev. 33: 689-703. https://doi.org/10.1111/j.1574-6976.2008.00153.x
  15. Kaestli M, Schmid M, Mayo M, Rothballer M, Harrington G, Richardson L, et al. 2012. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ. Microbiol. 14: 2058-2070. https://doi.org/10.1111/j.1462-2920.2011.02671.x
  16. Mikesell P, Ivins BE, Ristroph JD, Dreier TM. 1983. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39: 371-376.
  17. Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137-5142. https://doi.org/10.1093/nar/20.19.5137
  18. Felske A, Engelen B, Nubel U, Backhaus H. 1996. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 4162-4167.
  19. Samarakoon T, Wang SY, Alford MH. 2013. Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. Appl. Plant Sci. 1: apps.1200236.
  20. Ku HJ, Lee JH. 2014. Development of a novel long-range 16S rRNA universal primer set for metagenomic analysis of gastrointestinal microbiota in newborn infants. J. Microbiol. Biotechnol. 24: 812-822. https://doi.org/10.4014/jmb.1403.03032
  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  22. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  24. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  25. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, et al. 2005. The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-D296.
  26. Hojati Z, Zamanzad B, Hashemzadeh M, Molaie R, Gholipour A. 2015. The FimH gene in uropathogenic Escherichia coli strains isolated from patients with urinary tract infection. Jundishapur J. Microbiol. 8: e17520.
  27. Tartof SY, Solberg OD, Riley LW. 2007. Genotypic analyses of uropathogenic Escherichia coli based on fimH single nucleotide polymorphisms (SNPs). J. Med. Microbiol. 56: 1363-1369. https://doi.org/10.1099/jmm.0.47262-0
  28. Brumbaugh AR, Mobley HL. 2012. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev. Vaccines 11: 663-676. https://doi.org/10.1586/erv.12.36
  29. Norton EB, Lawson LB, Mahdi Z, Freytag LC, Clements JD. 2012. The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect. Immun. 80: 2426-2435. https://doi.org/10.1128/IAI.00181-12
  30. Wu M, Li X. 2015. Klebsiella pneumoniae and Pseudomonas aeruginosa, pp. 1547-1564. In Tang Y-W, Sussman M, Liu DY, Poxton I, Schwartzman J (eds.). Molecular Medical Microbiology, 2nd Ed. Vol. 3. Elsevier, Netherlands.
  31. Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4: 551-560. https://doi.org/10.3201/eid0404.980405
  32. Ryan KJ, Ray CG, Sherris JC. 2004. Sherris Medical Microbiology: An Introduction to Infectious Diseases. Mc-Graw Hill, NY.
  33. Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, Yoon SS, et al. 2002. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54: 1425-1443. https://doi.org/10.1016/S0169-409X(02)00152-7
  34. Reddy PP. 2014. Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Springer, New Delhi.
  35. Pal A. 2016. A comparative primary structure analysis of phosphofructokinase from different plant pathogenic bacteria. Int. J. Adv. Res. Biol. Sci. 3: 1-7.
  36. Jun SR, Wassenaar TM, Nookaew I, Hauser L, Wanchai V, Land M, et al. 2015. Diversity of Pseudomonas genomes, including Populus-associated isolates, as revealed by comparative genome analysis. Appl. Environ. Microbiol. 82: 375-383.
  37. Brodey CL, Rainey PB, Tester M, Johnstone K. 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol. Plant Microbe Interact. 4: 407-411. https://doi.org/10.1094/MPMI-4-407
  38. Young JM. 1970. Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n.sp. N. Z. J. Agric. Res. 13: 977-990. https://doi.org/10.1080/00288233.1970.10430530
  39. Preston GM. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 907-918. https://doi.org/10.1098/rstb.2003.1384
  40. Mahlen SD. 2011. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 24: 755-791. https://doi.org/10.1128/CMR.00017-11
  41. Cohen PS, Maguire JH, Weinstein L. 1980. Infective endocarditis caused by gram-negative bacteria: a review of the literature, 1945-1977. Prog. Cardiovasc. Dis. 22: 205-242. https://doi.org/10.1016/0033-0620(80)90010-9
  42. Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ. 2011. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193: 6057-6069. https://doi.org/10.1128/JB.05671-11
  43. Epstein E. 2015. Disposal and Management of Solid Waste Pathogens and Disease. Taylor Francis Group, LLC. Abingdon, UK.
  44. Cruz AT, Cazacu AC, Allen CH. 2007. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45: 1989-1992. https://doi.org/10.1128/JCM.00632-07
  45. Monier JM, Lindow SE. 2005. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49: 343-352. https://doi.org/10.1007/s00248-004-0007-9
  46. Cunningham DJ, Marcon MJ. 2012. Enterobacter, Cronobacter, and Pantoea species, pp. 804-806. In Long S, Pickering L, Prober C (eds.). Principles and Practice of Pediatric Infectious Diseases, 4th Ed. Chpt. 140. Saunders Imprint, Philadelphia.
  47. Nedwell DB. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101-111. https://doi.org/10.1111/j.1574-6941.1999.tb00639.x
  48. Watterworth L, Topp E, Schraft H, Leung KT. 2005. Multiplex PCR-DNA probe assay for the detection of pathogenic Escherichia coli. J. Microbiol. Methods 60: 93-105. https://doi.org/10.1016/j.mimet.2004.08.016
  49. Wieler LH, Vieler E, Erpenstein C, Schlapp T, Steinruck H, Bauerfeind R, et al. 1996. Shiga toxin-producing Escherichia coli strains from bovines: association of adhesion with carriage of eae and other genes. J. Clin. Microbiol. 34: 2980-2984.
  50. Vidotto MC, Gaziri LC, Delicato ER. 2004. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis: correction. Vet. Microbiol. 102: 95-96. https://doi.org/10.1016/j.vetmic.2004.06.001
  51. Czeczulin JR, Collie RE, McClane BA. 1996. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens. Infect. Immun. 64: 3301-3309.
  52. Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189. https://doi.org/10.1128/AEM.67.1.185-189.2001
  53. Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR. 1991. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 29: 426-430.
  54. Csordas AT, Barak JD, Delwiche MJ. 2004. Comparison of primers for the detection of Salmonella enterica serovars using real-time PCR. Lett. Appl. Microbiol. 39: 187-193. https://doi.org/10.1111/j.1472-765X.2004.01559.x

Cited by

  1. Optimization of xylanase from Pseudomonas mohnii isolated from Simlipal Biosphere Reserve, Odisha, using response surface methodology vol.18, pp.1, 2018, https://doi.org/10.1186/s43141-020-00099-7