DOI QR코드

DOI QR Code

Protection of Radiation-Induced DNA Damage by Functional Cosmeceutical Poly-Gamma-Glutamate

  • Oh, Yu-Jin (Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University) ;
  • Kwak, Mi-Sun (Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University) ;
  • Sung, Moon-Hee (Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University)
  • 투고 : 2017.12.07
  • 심사 : 2018.01.22
  • 발행 : 2018.04.28

초록

This study compared the radioprotective effects of high-molecular-weight poly-gamma-glutamate (${\gamma}-PGA$, average molecular mass 3,000 kDa) and a reduced form of glutathione (GSH, a known radioprotector) on calf thymus DNA damage. The radiation-induced DNA damage was measured on the basis of the decreased fluorescence intensity after binding the DNA with ethidium bromide. All the experiments used $^{60}Co$ gamma radiation at 1,252 Gy, representing 50% DNA damage. When increasing the concentration of ${\gamma}-PGA$ from 0.33 to $1.65{\mu}M$, the DNA protection from radiation-induced damage also increased, with a maximum of 87% protection. Meanwhile, the maximal DNA protection when increasing the concentration of GSH was only 70%. Therefore, ${\gamma}-PGA$ exhibited significant radioprotective effects against gamma irradiation.

키워드

참고문헌

  1. Saenger EL. 1980. Manual on early medical treatment of possible radiation injury. Med. Phys. 7: 82-82. https://doi.org/10.1118/1.594782
  2. Ramalho AT, Nascimento A. 1991. The fate of chromosomal aberrations in 137Cs-exposed individuals in the Goiania radiation accident. Health Phys. 60: 67-70. https://doi.org/10.1097/00004032-199101000-00010
  3. Rosen EM, Day R, Singh VK. 2015. New approaches to radiation protection. Front. Oncol. 4: 381.
  4. Maier P, Wenz F, Herskind C. 2014. Radioprotection of normal tissue cells. Strahlenther. Onkol. 190: 745-752. https://doi.org/10.1007/s00066-014-0637-x
  5. Johnke RM, Sattler JA, Allison RR. 2014. Radioprotective agents for radiation therapy: future trends. Future Oncol. 10: 2345-2357. https://doi.org/10.2217/fon.14.175
  6. Breen AP, Murphy JA. 1995. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 18: 1033-1077. https://doi.org/10.1016/0891-5849(94)00209-3
  7. Slupphaug G, Kavli B, Krokan HE. 2003. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res. 531: 231-251. https://doi.org/10.1016/j.mrfmmm.2003.06.002
  8. Le Caer S. 2011. Water radiolysis: influence of oxide surfaces on $H_2$ production under ionizing radiation. Water 3: 235-253. https://doi.org/10.3390/w3010235
  9. Skov KA. 1984. The contribution of hydroxyl radical to radiosensitization: a study of DNA damage. Radiat. Res. 99: 502-510. https://doi.org/10.2307/3576326
  10. Roots R, Chatterjee A, Chang P, Lommel L, Blakely E. 1985. Characterization of hydroxyl radical-induced damage after sparsely and densely ionizing irradiation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 47: 157-166. https://doi.org/10.1080/09553008514550231
  11. Bucher N, Britten C. 2008. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br. J. Cancer 98: 523-528. https://doi.org/10.1038/sj.bjc.6604208
  12. Santivasi WL, Xia F. 2014. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal. 21: 251-259. https://doi.org/10.1089/ars.2013.5668
  13. Andersen MH, Becker JC, thor Straten P. 2005. Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat. Rev. Drug Discov. 4: 399-409. https://doi.org/10.1038/nrd1717
  14. Koukourakis M. 2012. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br. J. Radiol. 85: 313-330. https://doi.org/10.1259/bjr/16386034
  15. Chatterjee A. 2013. Reduced glutathione: a radioprotector or a modulator of DNA-repair activity? Nutrients 5: 525-542. https://doi.org/10.3390/nu5020525
  16. Selim M, Saha A, Mukherjea KK. 2017. Protection of radiation induced DNA damage by a newly developed molybdenum complex. J. Radioanal. Nucl. Chem. 311: 189-193. https://doi.org/10.1007/s10967-016-5061-5
  17. Peterson D, Bensadoun R-J, Roila F, Group EGW. 2011. Management of oral and gastrointestinal mucositis: ESMO clinical practice guidelines. Ann. Oncol. 22: 78-84.
  18. Keefe DM, Schubert MM, Elting LS, Sonis ST, Epstein JB, Raber-Durlacher JE, et al. 2007. Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer 109: 820-831. https://doi.org/10.1002/cncr.22484
  19. Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, et al. 2010. New biological functions and applications of high-molecular-mass poly-$\gamma$-glutamic acid. Chem. Biodivers. 7: 1555-1562. https://doi.org/10.1002/cbdv.200900283
  20. Shih L, Van Y-T. 2001. The production of poly-($\gamma$-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225. https://doi.org/10.1016/S0960-8524(01)00074-8
  21. Choi J-C, Uyama H, Lee C-H, Sung M-H. 2015. In vivo hair growth promotion effects of ultra-high molecular weight poly-$\gamma$-glutamic acid from Bacillus subtilis (Chungkookjang). J. Microbiol. Biotechnol. 25: 407-412. https://doi.org/10.4014/jmb.1411.11076
  22. Lee T-Y, Kim D-J, Won J-N, Lee I-H, Sung M-H, Poo H. 2014. Oral administration of poly-$\gamma$-glutamate ameliorates atopic dermatitis in Nc/Nga mice by suppressing Th2-biased immune response and production of IL-17A. J. Invest. Dermatol. 134: 704-711. https://doi.org/10.1038/jid.2013.389
  23. Lee T-Y, Kim Y-H, Yoon S-W, Choi J-C, Yang J-M, Kim C-J, et al. 2009. Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol. Immunother. 58: 1781. https://doi.org/10.1007/s00262-009-0689-4
  24. Kim TW, Lee TY, Bae HC, Hahm JH, Kim YH, Park C, et al. 2007. Oral administration of high molecular mass poly-$\gamma$-glutamate induces NK cell-mediated antitumor immunity. J. Immunol. 179: 775-780. https://doi.org/10.4049/jimmunol.179.2.775
  25. Park C, Sung M-H. 2009. New bioindustrial development of high molecular weight of poly-gamma-glutamic acid produced by Bacillus subtilis (chungkookjang). Polym. Sci. Technol. 20: 440-446.
  26. Suh D. 1999. Cooperative binding interaction of ethidium with allosteric DNA. Exp. Mol. Med. 31: 151-158. https://doi.org/10.1038/emm.1999.25
  27. Reichmann M, Rice S, Thomas C, Doty P. 1954. A further examination of the molecular weight and size of desoxypentose nucleic acid. J. Am. Chem. Soc. 76: 3047-3053. https://doi.org/10.1021/ja01640a067
  28. Cai L, Cherian MG. 2003. Zinc-metallothionein protects from DNA damage induced by radiation better than glutathione and copper- or cadmium-metallothioneins. Toxicol. Lett. 136: 193-198. https://doi.org/10.1016/S0378-4274(02)00359-4
  29. Paul SS, Selim M, Saha A, Mukherjea KK. 2014. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage. Dalton Trans. 43: 2835-2848. https://doi.org/10.1039/C3DT52434E
  30. Vos O. 1992. Role of endogenous thiols in protection. Adv. Space Res. 12: 201-207.
  31. Prasad S, Srivastava S, Singh M, Shukla Y. 2009. Clastogenic effects of glyphosate in bone marrow cells of Swiss albino mice. J. Toxicol. 2009: 308985.
  32. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. 2005. Natural and edible biopolymer poly-$\gamma$-glutamic acid: synthesis, production, and applications. Chem. Record 5: 352-366. https://doi.org/10.1002/tcr.20061
  33. Buescher JM, Margaritis A. 2007. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol. 27: 1-19. https://doi.org/10.1080/07388550601166458
  34. Capitani D, De Angelis A, Crescenzi V, Masci G, Segre A. 2001. NMR study of a novel chitosan-based hydrogel. Carbohydr. Polym. 45: 245-252. https://doi.org/10.1016/S0144-8617(00)00255-1

피인용 문헌

  1. Inhibition of nattokinase against the production of poly (γ-glutamic Acid) in Bacillus subtilis natto vol.42, pp.11, 2018, https://doi.org/10.1007/s10529-020-02941-x
  2. Design, Synthesis, and Biological Evaluation of a Novel Aminothiol Compound as Potential Radioprotector vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/4714649
  3. Synthesis and radioprotective effects of novel hybrid compounds containing edaravone analogue and 3‐ n ‐butylphthalide ring‐opening derivatives vol.25, pp.12, 2021, https://doi.org/10.1111/jcmm.16557