DOI QR코드

DOI QR Code

GRADED PRIMITIVE AND INC-EXTENSIONS

  • Hamdi, Haleh (Department of Pure Mathematics Faculty of Mathematical Sciences University of Tabriz) ;
  • Sahandi, Parviz (Department of Pure Mathematics Faculty of Mathematical Sciences University of Tabriz)
  • 투고 : 2017.05.31
  • 심사 : 2017.09.04
  • 발행 : 2018.04.30

초록

It is well-known that quasi-$Pr{\ddot{u}}fer$ domains are characterized as those domains D, such that every extension of D inside its quotient field is a primitive extension and that primitive extensions are characterized in terms of INC-extensions. Let $R={\bigoplus}_{{\alpha}{{\in}}{\Gamma}}$ $R_{\alpha}$ be a graded integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$ and ${\star}$ be a semistar operation on R. The main purpose of this paper is to give new characterizations of gr-${\star}$-quasi-$Pr{\ddot{u}}fer$ domains in terms of graded primitive and INC-extensions. Applications include new characterizations of UMt-domains.

키워드

참고문헌

  1. D. D. Anderson and D. F. Anderson, Divisibility properties of graded domains, Canad. J. Math. 34 (1982), no. 1, 196-215. https://doi.org/10.4153/CJM-1982-013-3
  2. D. F. Anderson and G. W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169-184. https://doi.org/10.1016/j.jalgebra.2013.04.021
  3. A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Z. 225 (1997), no. 1, 49-65. https://doi.org/10.1007/PL00004598
  4. G. W. Chang and M. Fontana, Uppers to zero in polynomial rings and Prufer-like domains, Comm. Algebra 37 (2009), no. 1, 164-192. https://doi.org/10.1080/00927870802243564
  5. G. W. Chang and D. Y. Oh, Discrete valuation overrings of a graded Noetherian domain, J. Commut. Algebra to appear.
  6. D. E. Dobbs, On INC-extensions and polynomials with unit content, Canad. Math. Bull. 23 (1980), no. 1, 37-42. https://doi.org/10.4153/CMB-1980-005-8
  7. M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, in Non- Noetherian commutative ring theory, 169-197, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
  8. M. Fontana, J. A. Huckaba, and I. J. Papick, Prufer domains, Monographs and Text- books in Pure and Applied Mathematics, 203, Marcel Dekker, Inc., New York, 1997.
  9. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  10. R. Gilmer and J. F. Hoffmann, A characterization of Prufer domains in terms of polynomials, Pacific J. Math. 60 (1975), no. 1, 81-85. https://doi.org/10.2140/pjm.1975.60.81
  11. H. Hamdi and P. Sahandi, Uppers to zero in polynomial rings over graded domains and UMt-domains, Bull. Korean Math. Soc. 55 (2018), no. 1, 187-204. https://doi.org/10.4134/BKMS.B160929
  12. E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. https://doi.org/10.1080/00927878908823829
  13. J. L. Johnson, Integral closure and generalized transforms in graded domains, Pacific J. Math. 107 (1983), no. 1, 173-178. https://doi.org/10.2140/pjm.1983.107.173
  14. D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1968.
  15. A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1-21.
  16. P. Sahandi, Characterizations of graded Prufer $\star$-multiplication domains, Korean J. Math. 22, (2014), 181-206. https://doi.org/10.11568/kjm.2014.22.1.181
  17. P. Sahandi, Characterizations of graded Prufer $\star$-multiplication domains, II, Bull. Iranian Math. Soc. to appear, DOI:10.1007/s1980-018-0005-1.
  18. A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505-512. https://doi.org/10.2140/pjm.1953.3.505
  19. O. Zariski and P. Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, NJ, 1960.