Distribution of Beneficial Bacteria in the Intestines after Enzamin Ingestion of Bacillus subtilis AK Strain Fermentation

Bacillus subtilis AK균 발효액(Enzamin)의 섭취 후 장내 유익세균의 분포조사

  • Received : 2018.09.03
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

Purpose: The purpose of this study was to investigate whether intestinal proliferation is promoted in beneficial intestinal bacteria or decreased in harmful bacteria before and after ingesting Bacillus fermentation broth (ENM) for 8 weeks in the 16 subjects. Method: Intestinal bacteria were identified by PCR amplification using specific 16S rRNA primers. Results: The Bifidobacterium gene index(%)(gi%) increased to 58.92% in the control group and 69.53% in the test group after the ingestion of ENM, but there was no significant difference. Lactobacillus gi% increased significantly (49.37% in the control and 66.43% in the test) (p<.029). Clostridium gi% was significantly decreased after treatment (83.16% in the control and 67.76% in the test) (p<.077). Bacteroides gi% increased significantly (12.58% in the control and 20.87% in the test) after ingesting (p<.095). Prevotella gi% increased significantly (7.55% in the control and 17.28% in the test) after ingesting (p<.005). After ingesting, the median bacteria increased significantly in the control (20.06%) and the test (35.88%) (p<.001). Conclusions: After ingestion of the ENM, the number of beneficial bacteria increased and the number of harmful bacteria Clostridium tended to decrease. This suggests that ingestion of the Bacillus fermented beverage ENM has an effect on the proliferation of intestinal bacteria.

목적: 본 연구는 임상대상자 16명에게 Bacillus 발효용액(ENM)을 8주간 섭취시키기 전 후에 임상대상자들의 변에서 주요 목표 장내 유익세균의 증식이 촉진 되는지 및 유해균은 감소하는지를 연구하는 것이 목적이었다. 방법: 장내세균은 16S rRNA 특정 Primer를 이용하여 PCR 증폭기로 동정 검색하였다. 결과: Bifidobacterium속 gene index (%)(=gi%)는 ENM섭취 후에는 대조군이 58.92%, 임상군은 69.53%로 증가하였으나 유의성은 없었다. Lactobacillus 속 지수는 사후에는 대조군이 49.37%, 임상군은 66.43%로 유의성이 있게 증가하였다 (p<.029). Clostridium 속 지수는 사후에는 대조군이 83.16%, 임상군은 67.76%로 유의하게 감소하였다(p<.077). Bacteroides 속 지수는 사후에는 대조군이 12.58%, 임상군은 20.87%로 유의성이 있게 증가하였다(p<.095). Prevotella 속 지수는 사후에는 대조군이 7.55%, 임상군은 17.28%로 유의성이 있게 증가하였다(p<.005). 중간균체는 사후검사의 경우에는 대조군이 20.06%, 임상군은35.88%로 유의성이 있게 증가하였다(p<.001). 결론: Bacillus 발효액(ENM)을 섭취후에는 유익균 수는주로 증가하였고, 유해균인 Clostridium균수는감소하는경향을보였다. 이는 발효음료 ENM의 섭취가 유익한 장내세균의 증식에 영향을 주는 것으로 판단된다.

Keywords

Acknowledgement

We are grateful to Mr. S.J. Kim and Ms. E.H. Yang, Probioticslab R&D Institute. Bioeleven Co., Seoul, Korea. for their technical assistances. This research was supported by the RSW Dongeu Research Institute in Jecheon, Korea.

References

  1. Bartlett, J.G. 2002. Antibiotic-associated diarrhea. N. Engl. J. Med. 346(1): 334-339.
  2. Chang, J.Y., S.M. Shin, J. Chun, J.H. Lee, and J.K. Seo. 2011. Pyrosequencing-based molecular monitoring of the intestinal bacterial colonization in preterm infants. J. Pediatr. Gastroenterol. Nutr. 53(5): 512-519.
  3. Choi, J.B., Y.W. Shin, N.S. Paek, and Y.M. Kim. 2004. Influence of herbal extract on lactic acid bacteria growth and cyoprotectants. Kor. J. Food & Nutr. 17(1): 286-293.
  4. Clemente, J.C., L.K. Ursell, L.W. Parfrey, and R. Knight. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148(6): 1258-1270.
  5. Dominguez-Bello, M.G., E.K. Costello, M. Contreras., et al. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U.S.A. 107(26): 11971-11975.
  6. Enzamin Research Institute. 2007. Method for producing health nutritive food. Issued by Japan Patent Office, P3902015. (in Japanese).
  7. FAO/WHO. 2001. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ont., Canada.
  8. Grunewald, K.K. 1982. Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus. J. Food Sci. 47 (6): 2078-2079.
  9. Harrison, V.C. and G. Peat. 1975. Serum cholesterol and bowl flora in the new born. Am. J. Clin. Nutr. 28(12): 1351-1355.
  10. Jeong, H.M., Y.S. Kim, S.J. Ahn, M.S. Auh, J.B. Ahn, and K.Y. Kim. 2011. Effects of Zizyphus jujuba var. boeunesis extracts on the growth of intestinal microflora and its antioxidant activities. J. Kor. Soc Food Sci. Nutr. 40(4): 500-508. DOI: 10.3746/jkfn.2011.40.4.500
  11. Ko, J.S. 2013. The intestinal microbiota and human disease. Kor. J. Gastroenterol. 62(2): 85-91.
  12. Koenig, J.E., A. Spor, N. Scalfone, A.D. Fricker. J. Stombaugh, R. Knight, L.T. Angenent, and R.E. Ley. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA. 108(Suppl 1): 4578-4585.
  13. Kook, S.Y., Y. Kim, B. Kang, Y.H. Choe, Y.H. Kim, and S. Kim. 2018. Characterization of the fecal mcirobiota differs between age group in Korea. Intest. Res. 16(2): 246-254.
  14. Ku, K.H., D.J. Park, and C.K. Mok. 1997. Effect of yeast fermentation on the production of soy-oilgosaccharides from bean cooking water. Kor. J. Food Sci. Technol. 29(1): 133-137.
  15. Kubo, Y., A.P. Rooney, Y. Tsukakoshi, R. Nakagawa, H. Hasegawa, and K. Kimura. 2011. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production. Appl. Environ. Microbiol. 77(18): 6463-6469.
  16. Lee, H.S., J.J. Sang, S.D. Lee, J.Y. Moon, A.J. Kim, and K.S. Ryu. 2001. Effect of dietary mulberry leaf on the composition of intestinal microflora in SD rats. Kor. J. Food Sci. Technol. 33 (2): 252-255.
  17. Ley, R.E., D.A. Peterson, and J.I. Gordon. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4): 837-848.
  18. Mitsuoka, T. 1990. A color atlas of anaerobic bacteria. Shobunsha, Tokyo, Japan. p. 51.
  19. Oh, S.J. 2008. Probiotics and prolongation of life. Kor. J. Dairy Sci. Technol. 26(1): 31-37.
  20. Rinttila, T., A. Kassinen, F. Malinene, I. Krogius, and A. Palva. 2004. Development of an extensive a set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in fecal samples by real-time PCR. J. Appl. Microbiol. 97(4): 1166-1177.
  21. Schmittgen, T.D. and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3(6): 1101-1108.
  22. Schrezenmeir, J., and M. de Vrese. 2001. Probiotics, prebiotics, and synbiotics-approaching a definitions. Am. J. Clin. Nutr. 73 (supple): 361S-364S.
  23. Schwartz, S., I. Friedberg, and I.V. Ivanov, J.S. Goldsby, D.B. Dahl, D. Herman, M. Wang, S.M. Donovan, and R.S. Chapkin. 2012. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 13(4): r32.
  24. Smith, L.D.S. 1979. Virulence factors of Clostridium perfringens. Rev. of Infect. Dis. 1(2): 254-262.
  25. Takeda, K., T. Suzuki, S.I. ShimadaI, K. Shida, N. Nanno, and K. Okumura. 2016. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin. Exp. Immunol. 146(1): 109-115.
  26. The future of Enzamin. 2018. http://www.enzamin.com/product04a.html (in Japanes). Accessed 1th July, 2018.
  27. Weinstock, G.M. 2012. Genomic approaches to studying the human microbiota. Nature 489(9): 250-256.
  28. Won, H.R., Y.J. Park, S.H. Choi, and J.S. Go. 2001. The Effect of fermented milk by Bifidobacterium bifidum on serum lipid metabolism in rats treated high fat diet. J. Kor. Soc. Food Sci. Nutr. 30(5): 933-936.
  29. Zoetendal, E.G., C.T. Collier, S. Koike, R.I. Mackie, and H.R. Gaskins. 2004. Molecular ecological analysis of the gastrointestinal microbiota: a review. J. Nutr. 134(2): 465-472.