DOI QR코드

DOI QR Code

An Energy Optimization Algorithm for Maritime Search and Rescue in Wireless Sensor Networks

무선 센서 네트워크에서 해양 수색 및 구조를 위한 에너지 최적화 알고리즘

  • Jang, Kil-woong (Department of Data Information, Korea Maritime and Ocean University)
  • Received : 2017.12.06
  • Accepted : 2017.12.24
  • Published : 2018.04.30

Abstract

In wireless sensor networks, we propose an optimization algorithm in order to minimize the consumed energy of nodes for maritime search and rescue. In the marine environment, search and rescue operations are mainly performed on the surveillance side and passively on the rescued side. A self-configurable wireless sensor network can build a system that can send rescue signals in the operations. A simulated annealing algorithm is proposed to minimize the consumed energy of nodes in the networks with many nodes. As the density of nodes becomes higher, the algorithmic computation will increase highly. To search the good result in a proper execution time, the proposed algorithm proposes a new neighborhood generating operation and improves the efficiency of the algorithm. The proposed algorithm was evaluated in terms of the consumed energy of the nodes and algorithm execution time, and the proposed algorithm performed better than other optimization algorithms in the performance results.

무선 센서 네트워크에서 해양 수색 및 구조를 목적으로 노드의 소모 에너지를 최소화하기 위한 최적화 알고리즘을 제안한다. 해양 환경에서 수색 및 구조작업은 감시하는 측에서 주로 이루어지며, 구조되는 측에서는 수동적으로 기다려야 한다. 이에 반해 자가 구성 이 가능한 무선 센서 네트워크는 해양 수색 및 구조작업에서 능동적으로 구조 신호를 보낼 수 있는 시스템을 구축할 수 있다. 본 논문에서는 많은 수의 노드가 배치된 네트워크에서 노드의 소모 에너지를 최소화하기 위하여 시뮬레이티드 어닐링 알고리즘을 제안한다. 네트워크에서 노드의 밀도가 높으면 일반적으로 알고리즘 계산양이 급격히 늘어난다. 따라서 제안된 알고리즘은 적정한 실행 시간 내에 최적의 결과를 찾기 위해 새로운 이웃해 생성 동작을 제안하고 알고리즘의 효율성을 높인다. 제안된 알고리즘은 노드의 소모 에너지와 알고리즘 실행시간 면에서 성능 평가를 하였으며, 성능 평가 결과에서 기존의 방식에 비해 성능이 우수하였다.

Keywords

References

  1. J. Peng and C. Shi, "Remote sensing application in the maritime search and Rescue," Remote Sensing, vol. 2, pp. 1-24, June 2012
  2. M. Rajaparthiban, P. Ashvini, and R. Dhivyadive, "Multi purpose marine wireless networks for fisherman aid and other applications," International Journal of Engineering Research & Technology, vol. 2, no. 7, pp. 50-54, July 2013.
  3. H Wu, L. Yang, L. Liu, M. Xu, and X. Guan, "Real-time localization algorithm for maritime search and rescue wireless sensor network," International Journal of Distributed Sensor Networks, vol. 9, no. 3, pp. 1-6, Mar. 2013.
  4. G. Xu, W. Shen, and X. Wang, "Applications of wireless sensor networks in marine environment monitoring: A Survey," Sensors, vol. 14. no. 9, pp. 16932-16954, Sep. 2014. https://doi.org/10.3390/s140916932
  5. H. Wu, S. Nie, and J. Li, "EA-COR: an environment adaptive clustering opportunistic routing protocol of WSN," Journal of Networks, vol. 9, no. 11, pp. 2964-2970. Nov. 2014.
  6. Z. Zhan, J. Zhang, and Z. Fan, "Solving the optimal coverage problem in wireless sensor networks using evolutionary computation algorithms," in Proceedings of the 8th International Conference on Simulated Evolution and Learning, pp. 166-176, Seal, 2010.
  7. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks," Wireless Networks, vol. 8, no. 5, pp. 481-494, Sep. 2002. https://doi.org/10.1023/A:1016542229220
  8. A. Cerpa and D. Estrin, "ASCENT: adaptive self-configuring sensor networks topologies," IEEE Transactions on Mobile Computing, vol. 3, no. 3, pp. 272-285, Sep. 2004. https://doi.org/10.1109/TMC.2004.16
  9. N. Li and J. C. Hou, "Topology control in heterogeneous wireless networks: problems and solutions," in Proceedings of the 23rd Annual Conference of the IEEE Computer and Communications Societies, pp. 232-243, 2004.
  10. A. Jiang and J. Bruck, "Monotone percolation and the topology control of wireless networks," in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 327-338, March 2005.
  11. F. Liqun, S. C. Liew, and H. Jianwei, "Power controlled scheduling with consecutive transmission constraints: complexity analysis and algorithm design," in Proceedings of the 26th Annual IEEE Conference on Computer Communications, pp. 1530-1538, 2009.
  12. H. Wu, Q. M. Erol-Kantarci, H. Mouftah, and S. Oktug, "An energy distribution and optimization algorithm in wireless sensor networks for maritime search and rescue," International Journal of Distributed Sensor Networks, vol. 9, no. 2, pp. 1-8, Feb. 2013.
  13. S. Y. Park and S. M. Hwang, "A congestion avoidance policy to extend lifetime of sensor networks," Journal of Security Engineering, vol.12, no.2, pp. 169-180, Apr. 2015. https://doi.org/10.14257/jse.2015.04.01
  14. K. W. Jang, "Sensor node deployment in wireless sensor networks based on tabu search algorithm," Journal of the Korea Institute of Information and Communication Engineering, vol.19. no. 5, pp. 1084-1090, May 2015. https://doi.org/10.6109/jkiice.2015.19.5.1084