DOI QR코드

DOI QR Code

천정형 배열 마이크를 이용한 강의용 광역 마이크 시스템

Wide Coverage Microphone System for Lecture Using Ceiling-Mounted Array Structure

  • Oh, Woojin (School of Electronics, Kumoh National Institute of Technology)
  • 투고 : 2018.02.14
  • 심사 : 2018.03.23
  • 발행 : 2018.04.30

초록

멀티미디어 강의시스템은 첨단 기술로 스마트해지고 있지만 마이크는 손에 들거나 신체에 부착하는 고전 방식에 여전히 의존하고 있다. 본 논문에서는 천정 부착형 배열 마이크를 제안하여 넓은 범위를 지원하면서 화자가 아무 장비를 착용하지 않고 자유롭게 이동이 가능함을 보였다. 제안된 시스템은 복잡한 빔 포밍 방식 대신에 이동통신의 셀(Cell)과 핸드 오버(Handover)를 적용하여 셀 간에 연속되는 마이크를 저가로 구현하였다. 음성에서 무성음 구간이 의사잡음(Pseudo Noise)과 유사한 특징을 이용하여 3개의 마이크에 지연-합의 다중경로 수신기를 연결하여 소프트 핸드오버를 제공하였다. 제안된 마이크 시스템은 강단 범위인 $6.3{\times}1.5m$ 영역에서 동작을 검증하였다. 실시간 처리를 위하여 상관기(Correlator)의 연산 범위를 82% 이상 줄였으며 출력 지연은 지연 적응 필터로 개선하였다.

While the multimedia lecture system has been getting smart using immerging technology, the microphone still relies on the classical approach such as holding in hand or attaching on the body. In this paper, we propose a ceiling mounted array microphone system that allows a wide reception coverage and instructors to move freely without attaching microphone. The proposed system adopts cell and handover of mobile communication instead of a complicated beamforming method and implements a wide range microphone over several cells with low cost. Since the characteristics of unvoiced speech is similar to Pseudo Noise it is shown that soft handover are possible with 3 microphones connected to delay-sum multipath receiver. The proposed system is tested in $6.3{\times}1.5m$ area. For real-time processing the correlation range can be reduced by 82% or more, and the output latency delay can be improved by using the delay adaptive filter.

키워드

참고문헌

  1. J. Benesty, M. M. Sondhi, and Y. Huang, Springer Handbook of Speech Processing. New York, NY: Springer, 2007.
  2. Wainhouse Research. (2017, June). Evaluation of Nureva's HDL300 audio conference system: Hands-on testing of a wall-mounted USB mic/speaker solution [Internet]. Available: https://cp.wainhouse.com/download/59754/201706-Evaluation-NurevaHDL300-R1.pdf.
  3. Z. Prime and C. Doolan, "A comparison of popular beamforming arrays," in Proceedings of Acoustics, Victor Harbor, Australia, pp. 151-157, 2013.
  4. G. Stuber, Principles of Mobile Communication, 4th ed Boston, MA: Springer, 2017.
  5. A. Upadhyay and R. B. Pachori, "Instantaneous voiced/non-voiced detection in speech signals based on variationalmode decomposition," Journal of the Franklin Institute, vol. 352, no. 7, pp. 2679-2707, July 2015. https://doi.org/10.1016/j.jfranklin.2015.04.001
  6. W. H. Press, B. P. Flannery, S. A. Teuklsky, and W. T. Vetterling, "Fourier and spectral applications", in Numerical Recipes: The Art of Scientific Computing. 2nd ed. New York NY: Cambridge Univ., ch. 13, pp. 537-608, 1992.
  7. S. So, K. J. Lee, K. You, H. Lim, and J. Park, "A study of the pitch estimation algorithms of speech signal by using average magnitude difference function(AMDF)," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 7, no. 4, pp. 235-242, Apr. 2017.
  8. U.S. Department of Transportation. (2006, July). Federal highway administration university course on bicycle and pedestrian transportation: Lesson 8: pedestrian characteristics [Internet]. Available: http://www.tfhrc.gov/safety/pedbike/pubs/05085/pdf/combinedlo.pdf.
  9. P. K. Meher, M. Maheshwari, "A high-speed FIR adaptive filter architecture using a modified delayed LMS algorithm," in Proceedings of IEEE International Symposium of Circuits and Systems, Rio de Janeiro, Brazil, pp. 121-124, May 2011.
  10. European Broadcasting Union. (2008, September). Sound quality assessment material: recordings for subjective tests [Internet]. Available: http://www.ebu.ch/tech_32/tech_t3253.pdf.
  11. T. J. Cox and P. D'Antonio, Acoustic Absorbers and Diffusers: Theory, Design and Application, New York, NY: Spon Press, 2001.
  12. M. Kang and W. Oh, "Implementation of real-time sound-location tracking method using TDoA for smart lecture system," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 4, pp. 708-717, Apr. 2017. https://doi.org/10.6109/jkiice.2017.21.4.708
  13. W. Oh and J. J. Hwang, Apparatus Having Complex Howling Removing Process, Korean Patent KR101607902B1, to Kumoh National University of Technology, Kumi, Korea, 2014.
  14. B. B. Boren, and A. Roginska, "Sound radiation of trained vocalizers," in Proceedings of Meetings on Acoustics, vol. 19, 035025, Montreal, Canada, June 2013.