DOI QR코드

DOI QR Code

합성 유전자를 이용하여 Escherichia coli에서 백신 후보의 생산 혹은 진단용 항체의 개발을 위한 인간 rotavirus VP8* 부분 단백질의 발현

Use of the Synthetic Gene Encoding the Truncated Human Rotavirus VP8* Protein in Escherichia coli for Production of Vaccine Candidates or Development of Diagnostic Antibodies

  • 김상래 (고신대학교 생명과학.화학부 의생명과학 전공) ;
  • 이병욱 (고신대학교 생명과학.화학부 의생명과학 전공)
  • Kim, Sang-Rae (Major in Biomedical Sciences, Division of Biological Sciences and Chemistry, Kosin University) ;
  • Lee, Bheong-Uk (Major in Biomedical Sciences, Division of Biological Sciences and Chemistry, Kosin University)
  • 투고 : 2017.12.02
  • 심사 : 2017.12.31
  • 발행 : 2018.04.30

초록

인간 rotavirus는 영아에게 급성 설사를 일으키는 병원체의 하나이다. 본 연구에서는 Escherichia coli의 코돈 선호도를 따라서 인간 rotavirus A (serotype 1 strain WA)의 $VP8^*$ 단백질을 일부분 암호화하도록 인공적인 유전자를 합성하였다. 합성된 $VP8^*$ 유전자는 코돈을 번역틀에 일치시키고 클로닝이 용이하도록 하기 위한 NdeI 및 HindIII 제한효소 절단 부위와 친화적 정제를 위한 6-히스티딘 암호화 서열을 C-말단에 보유하고 있다. 합성된 $VP8^*$ DNA 절편을 pT7-7 발현 벡터에 삽입하여 E. coli BL21 (DE3)로 형질전환한 후에 최종 농도 0.05 mM IPTG로 생산을 유도한 결과 예상했던 대로 19.7-kDa 크기의 $VP8^*$ 단백질이 고농도로 발현되었다. SDS-PAGE에 전개된 단백질들을 대상으로 mouse anti-rotavirus capsid antibody를 사용한 Western blotting의 결과 ~20-kDa $VP8^*$ 단백질 밴드가 관찰되었다. 인공 $Vp8^*$ 단백질이 피하 주사된 토끼의 polyclonal antibody 혈장을 이용한 조사에서도 동일한 크기의 단백질 밴드를 확인할 수 있었다. 이는 합성된 유전자가 바이러스성 질환을 통제할 항원성 백신 후보의 생산 혹은 진단용 항체를 개발하기 위한 쉽고 빠른 방법을 제공할 수 있다는 의미이다.

Human rotavirus is a causative agent of acute diarrhea among children. The artificial gene encoding the truncated $VP8^*$ protein of human rotavirus A (serotype 1 strain WA) was synthesized according to the Escherichia coli codon preference. The synthetic $VP8^*$ gene also possessed the NdeI and HindIII restriction sites for the convenient in-frame cloning for translation and a 6-histidine tag at C-terminus for Ni+ affinity purification. Molecular weight of the truncated $VP8^*$ protein deduced from the nucleotide sequences of the artificial gene was a 19.7-kDa. This synthetic $VP8^*$ DNA fragment was inserted into the pT7-7 expression vector and transformed into E. coli BL21 (DE3). Transformants harboring the synthetic gene encoding the $VP8^*$ protein was induced by supplement of a final concentration of 0.05 mM ITPG at $20^{\circ}C$. Protein crude extract from the E. coli transformants was subjected to Western blotting with the mouse anti-rotavirus capsid antibody, showing ~20-kDa $VP8^*$ protein band. The truncated $VP8^*$ protein band was also observed by Western blotting using the rabbit polyclonal antibody serum made against the truncated $VP8^*$ protein. This study suggested that the synthetic gene could be used as an easy way to produce the antigenic vaccine candidate for control of virus-associated diseases or to develop antibodies for diagnostic purpose.

키워드

참고문헌

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Scidman, J. G., Smith, R. A. and Struhl, K. 2002. Short Protocols in Molecular Biology. (John Wiley & Sons, New York, NY, USA).
  2. Babji, S. and Kang, G. 2012. Rotavirus vaccination in developing countries. Curr. Opin. Virol. 2, 443-448. https://doi.org/10.1016/j.coviro.2012.05.005
  3. Brown, W. C. and Campbell, J. L. A., 1993. New cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene 127, 99-103. https://doi.org/10.1016/0378-1119(93)90622-A
  4. Chung, C. T., Niemela, S. L. and Miller, R. H. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA. 86, 2172-2175. https://doi.org/10.1073/pnas.86.7.2172
  5. Coligan, J. E., Dunn, B. M., Speicher, D. W. and Wingfield, P. T. 2003. Short Protocols in Protein Science. (John Wiley & Sons, New York, NY, USA).
  6. Doro, R., Laszlo, B., Martella, V., Leshem, E., Gentsch, J., Parashar, U. and Banyai, K. 2014. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 28, 446-461. https://doi.org/10.1016/j.meegid.2014.08.017
  7. Favacho, A. R., Kurtenbach, E., Sardi, S. I. and Gouvea, V. S. 2006. Cloning, expression, and purification of recombinant bovine rotavirus hemagglutinin, VP8*, in Escherichia coli. Protein Expr. Purif. 46, 196-203 https://doi.org/10.1016/j.pep.2005.09.014
  8. Hoshino, Y. and Kapikian, A. Z. 2000. Rotavirus serotypes: classification and importance in epidemiology, immunity, and vaccine development. J. Health Popul. Nutr. 18, 5-14.
  9. Kang, D. K., Kim, P. H., Ko, E. J., Seo, J. Y., Seong, S. Y., Kim, Y. H., Kwon, I. C., Jeong, S. Y. and Yang, J. M. 1999. Peroral immunization of microencapsulated human VP8* in combination with cholera toxin induces strong systemic and intestinal antibody responses. Mol. Cells 9, 609-616
  10. Kim, H. S., Lee, B., Han, S. Y. and Jung, Y. T. 2017. Expression of bovine rotavirus VP8 and preparation of IgY antibodies against recombinant VP8. Acta Virol. 61, 143-149. https://doi.org/10.4149/av_2017_02_03
  11. Kovacs-Nolan, J., Sasaki, E., Yoo, D. and Mine, Y. 2001. Cloning and expression of human rotavirus spike protein, VP8*, in Escherichia coli. Biochem. Biophys. Res. Commun. 282, 1183-1188. https://doi.org/10.1006/bbrc.2001.4717
  12. Leenaars, P. P., Hendriksen, C. F., de Leeuw, W. A., Carat, F., Delahaut, P., Fischer, R., Halder, M., Hanly, W. C., Hartinger, J., Hau, J., Lindblad, E. B., Nicklas, W., Outschoorn, I. M. and Stewart-Tull, D. E. 1999. The Production of polyclonal antibodies in laboratory animals. The report and recommendations of ECVAM workshop 35. Altern. Lab. Anim. 27, 79-102.
  13. Lepault, J. 2001. Structural polymorphism of the major capsid protein of rotavirus. EMBO J. 20, 1498-1507. https://doi.org/10.1093/emboj/20.7.1498
  14. Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A. and Glass, R. I. 2003. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9, 565-572. https://doi.org/10.3201/eid0905.020562
  15. Pera, F. F., Mutepfa, D. L., Khan, A. M., Els, J. H., Mbewana, S., van Dijk, A. A., Rybicki, E. P. and Hitzeroth, II. 2015. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana. Virol. J. 12, 205-215. https://doi.org/10.1186/s12985-015-0436-8
  16. Ruiz, M. C., Leon, T., Diaz, Y. and Michelangeli, F. 2009 Molecular biology of rotavirus entry and replication. Sci. World J. 9, 1476-1497. https://doi.org/10.1100/tsw.2009.158
  17. Wen, X., Cao, D., Jones, R. W., Li, J., Szu, S. and Hoshino, Y. 2012. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates. Vaccine 30, 6121-6126. https://doi.org/10.1016/j.vaccine.2012.07.078
  18. Xue, M., Yu L., Jia, L., Li, Y., Zeng, Y., Li, T., Ge, S. and Xia, N. 2016. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model. Hum. Vaccin. Immunother. 12, 2959-2968. https://doi.org/10.1080/21645515.2016.1204501