DOI QR코드

DOI QR Code

Diffuse Intrinsic Pontine Glioma : Clinical Features, Molecular Genetics, and Novel Targeted Therapeutics

  • Mathew, Ryan K. (Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children) ;
  • Rutka, James T. (Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children)
  • 투고 : 2018.01.06
  • 심사 : 2018.01.21
  • 발행 : 2018.05.01

초록

Diffuse intrinsic pontine glioma (DIPG) is a deadly paediatric brain cancer. Transient response to radiation, ineffective chemotherapeutic agents and aggressive biology result in rapid progression of symptoms and a dismal prognosis. Increased availability of tumour tissue has enabled the identification of histone gene aberrations, genetic driver mutations and methylation changes, which have resulted in molecular and phenotypic subgrouping. However, many of the underlying mechanisms of DIPG oncogenesis remain unexplained. It is hoped that more representative in vitro and preclinical models-using both xenografted material and genetically engineered mice-will enable the development of novel chemotherapeutic agents and strategies for targeted drug delivery. This review provides a clinical overview of DIPG, the barriers to progress in developing effective treatment, updates on drug development and preclinical models, and an introduction to new technologies aimed at enhancing drug delivery.

키워드

참고문헌

  1. Aquino-Parsons C, Hukin J, Green A : Concurrent carbogen and radiation therapy in children with high-risk brainstem gliomas. Pediatr Blood Cancer 50 : 397-399, 2008 https://doi.org/10.1002/pbc.21057
  2. Bailey S, Howman A, Wheatley K, Wherton D, Boota N, Pizer B, et al. : Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy--results of a United Kingdom phase II trial (CNS 2007 04). Eur J Cancer 49 : 3856-3862, 2013 https://doi.org/10.1016/j.ejca.2013.08.006
  3. Bartels U, Hawkins C, Vezina G, Kun L, Souweidane M, Bouffet E : Proceedings of the diffuse intrinsic pontine glioma (DIPG) Toronto Think Tank: advancing basic and translational research and cooperation in DIPG. J Neurooncol 105 : 119-125, 2011 https://doi.org/10.1007/s11060-011-0704-4
  4. Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, et al. : Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 70 : 2548-2557, 2010 https://doi.org/10.1158/0008-5472.CAN-09-2503
  5. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M, et al. : Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24 : 660-672, 2013 https://doi.org/10.1016/j.ccr.2013.10.006
  6. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH : Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91 : 2076-2080, 1994 https://doi.org/10.1073/pnas.91.6.2076
  7. Bradley KA, Zhou T, McNall-Knapp RY, Jakacki RI, Levy AS, Vezina G, et al. : Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children's oncology group phase 2 study. Int J Radiat Oncol Biol Phys 85 : e55-e60, 2013 https://doi.org/10.1016/j.ijrobp.2012.09.004
  8. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. : Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46 : 451-456, 2014 https://doi.org/10.1038/ng.2936
  9. Cage TA, Samagh SP, Mueller S, Nicolaides T, Haas-Kogan D, Prados M, et al. : Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Childs Nerv Syst 29 : 1313-1319, 2013 https://doi.org/10.1007/s00381-013-2101-0
  10. Caretti V, Sewing AC, Lagerweij T, Schellen P, Bugiani M, Jansen MH, et al. : Human pontine glioma cells can induce murine tumors. Acta Neuropathol 127 : 897-909, 2014 https://doi.org/10.1007/s00401-014-1272-4
  11. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. : Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130 : 815-827, 2015 https://doi.org/10.1007/s00401-015-1478-0
  12. Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, et al. : The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27 : 985-990, 2013 https://doi.org/10.1101/gad.217778.113
  13. Chassot A, Canale S, Varlet P, Puget S, Roujeau T, Negretti L, et al. : Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J Neurooncol 106 : 399-407, 2012 https://doi.org/10.1007/s11060-011-0681-7
  14. Cordero FJ, Huang Z, Grenier C, He X, Hu G, McLendon RE, et al. : Histone H3.3K27M represses p16 to accelerate gliomagenesis in a murine model of DIPG. Mol Cancer Res 15 : 1243-1254, 2017 https://doi.org/10.1158/1541-7786.MCR-16-0389
  15. Diaz RJ, McVeigh PZ, O'Reilly MA, Burrell K, Bebenek M, Smith C, et al. : Focused ultrasound delivery of Raman nanoparticles across the bloodbrain barrier: potential for targeting experimental brain tumors. Nanomedicine 10 : 1075-1087, 2014 https://doi.org/10.1016/j.nano.2013.12.006
  16. Doolittle ND, Anderson CP, Bleyer WA, Cairncross JG, Cloughesy T, Eck SL, et al. : Importance of dose intensity in neuro-oncology clinical trials: summary report of the sixth annual meeting of the Blood-Brain Barrier Disruption Consortium. Neuro Oncol 3 : 46-54, 2001 https://doi.org/10.1093/neuonc/3.1.46
  17. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, et al. : A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369 : 640-648, 2013 https://doi.org/10.1056/NEJMoa1300962
  18. Etame AB, Diaz RJ, O'Reilly MA, Smith CA, Mainprize TG, Hynynen K, et al. : Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine 8 : 1133-1142, 2012 https://doi.org/10.1016/j.nano.2012.02.003
  19. Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT : Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 32 : E3, 2012
  20. Fisher PG, Breiter SN, Carson BS, Wharam MD, Williams JA, Weingart JD, et al. : A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer 89 : 1569-1576, 2000 https://doi.org/10.1002/1097-0142(20001001)89:7<1569::AID-CNCR22>3.0.CO;2-0
  21. Freeman CR, Perilongo G : Chemotherapy for brain stem gliomas. Childs Nerv Syst 15 : 545-553, 1999 https://doi.org/10.1007/s003810050542
  22. Funato K, Major T, Lewis PW, Allis CD, Tabar V : Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346 : 1529-1533, 2014 https://doi.org/10.1126/science.1253799
  23. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, et al. : Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 21 : 555-559, 2015 https://doi.org/10.1038/nm.3855
  24. Halvorson KG, Barton KL, Schroeder K, Misuraca KL, Hoeman C, Chung A, et al. : A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent. PLoS One 10 : e0118926, 2015 https://doi.org/10.1371/journal.pone.0118926
  25. Hankinson TC, Campagna EJ, Foreman NK, Handler MH : Interpretation of magnetic resonance images in diffuse intrinsic pontine glioma: a survey of pediatric neurosurgeons. J Neurosurg Pediatr 8 : 97-102, 2011 https://doi.org/10.3171/2011.4.PEDS1180
  26. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. : Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20 : 1394-1396, 2014 https://doi.org/10.1038/nm.3716
  27. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA : Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220 : 640-646, 2001 https://doi.org/10.1148/radiol.2202001804
  28. Jansen MH, van Vuurden DG, Vandertop WP, Kaspers GJ : Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev 38 : 27-35, 2012 https://doi.org/10.1016/j.ctrv.2011.06.007
  29. Janssens GO, Jansen MH, Lauwers SJ, Nowak PJ, Oldenburger FR, Bouffet E, et al. : Hypofractionation vs conventional radiation therapy for newly diagnosed diffuse intrinsic pontine glioma: a matched-cohort analysis. Int J Radiat Oncol 85 : 315-320, 2013 https://doi.org/10.1016/j.ijrobp.2012.04.006
  30. Jolesz FA, Hynynen KH : MRI-Guided Focused Ultrasound Surgery, ed 1. Boca Raton : CRC Press, 2007
  31. Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ, et al. : Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 19 : 153-161, 2017
  32. Kambhampati M, Perez JP, Yadavilli S, Saratsis AM, Hill AD, Ho CY, et al. : A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget 6 : 12740-12747, 2015
  33. Kebudi R, Cakir FB : Management of diffuse pontine gliomas in children: recent developments. Paediatr Drugs 15 : 351-362, 2013 https://doi.org/10.1007/s40272-013-0033-5
  34. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, et al. : K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124 : 439-447, 2012 https://doi.org/10.1007/s00401-012-0998-0
  35. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. : The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131 : 803-820, 2016 https://doi.org/10.1007/s00401-016-1545-1
  36. Marigil M, Martinez-Velez N, Dominguez PD, Idoate MA, Xipell E, Patino-Garcia A, et al. : Development of a DIPG orthotopic model in mice using an implantable guide-screw system. PLoS One 12 : e0170501, 2017 https://doi.org/10.1371/journal.pone.0170501
  37. Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE : Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS One 6 : e22598, 2011 https://doi.org/10.1371/journal.pone.0022598
  38. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B : High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66 : 858-861, 2009 https://doi.org/10.1002/ana.21801
  39. Miller DL : Particle gathering and microstreaming near ultrasonically activated gas-filled micropores. J Acoust Soc Am 84 : 1378-1387, 1988 https://doi.org/10.1121/1.396636
  40. Misuraca KL, Barton KL, Chung A, Diaz AK, Conway SJ, Corcoran DL, et al. : Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathol Commun 2 : 134, 2014 https://doi.org/10.1186/s40478-014-0134-6
  41. Misuraca KL, Cordero FJ, Becher OJ : Pre-clinical models of diffuse intrinsic pontine glioma. Front Oncol 5 : 172, 2015
  42. Misuraca KL, Hu G, Barton KL, Chung A, Becher OJ : A novel mouse model of diffuse intrinsic pontine glioma initiated in Pax3-expressing cells. Neoplasia 18 : 60-70, 2016 https://doi.org/10.1016/j.neo.2015.12.002
  43. Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, et al. : Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A 108 : 4453-4458, 2011 https://doi.org/10.1073/pnas.1101657108
  44. Narayana A, Kunnakkat S, Chacko-Mathew J, Gardner S, Karajannis M, Raza S, et al. : Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol 12 : 985-990, 2010 https://doi.org/10.1093/neuonc/noq033
  45. Panditharatna E, Yaeger K, Kilburn LB, Packer RJ, Nazarian J : Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape. Cancer Genet 208 : 367-373, 2015 https://doi.org/10.1016/j.cancergen.2015.04.008
  46. Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, et al. : H3.3K27M cooperates with Trp53 loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. Cancer Cell 32 : 684-700.e9, 2017 https://doi.org/10.1016/j.ccell.2017.09.014
  47. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, et al. : Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29 : 3999-4006, 2011 https://doi.org/10.1200/JCO.2011.35.5677
  48. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, et al. : Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23 : 493-500, 2017 https://doi.org/10.1038/nm.4296
  49. Plessier A, Le Dret L, Varlet P, Beccaria K, Lacombe J, Meriaux S, et al. : New in vivo avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. Oncotarget 8 : 52543-52559, 2017
  50. Puget S, Philippe C, Bax DA, Job B, Varlet P, Junier MP, et al. : Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 7 : e30313, 2012 https://doi.org/10.1371/journal.pone.0030313
  51. Robison NJ, Kieran MW : Diffuse intrinsic pontine glioma: a reassessment. J Neurooncol 119 : 7-15, 2014 https://doi.org/10.1007/s11060-014-1448-8
  52. Roujeau T, Machado G, Garnett MR, Miquel C, Puget S, Geoerger B, et al. : Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg 107(1 Suppl) : 1-4, 2007 https://doi.org/10.3171/JNS-07/07/0001
  53. Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, et al. : Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol 14 : 547-560, 2012 https://doi.org/10.1093/neuonc/nos067
  54. Schroeder KM, Hoeman CM, Becher OJ : Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res 75 : 205-209, 2014 https://doi.org/10.1038/pr.2013.194
  55. Shang X, Wang P, Liu Y, Zhang Z, Xue Y : Mechanism of low-frequency ultrasound in opening blood-tumor barrier by tight junction. J Mol Neurosci 43 : 364-369, 2011 https://doi.org/10.1007/s12031-010-9451-9
  56. Sheikov N, McDannold N, Jolesz F, Zhang YZ, Tam K, Hynynen K : Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier. Ultrasound Med Biol 32 : 1399-1409, 2006 https://doi.org/10.1016/j.ultrasmedbio.2006.05.015
  57. Sheikov N, McDannold N, Sharma S, Hynynen K : Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34 : 1093-1104, 2008 https://doi.org/10.1016/j.ultrasmedbio.2007.12.015
  58. Souweidane MM, Kramer K, Pandit-Taskar N, Zanzonico P, Zhou Z, Donzelli M, et al. : A phase I study of convection enhanced delivery (CED) of 124I-8H9 radio-labeled monoclonal antibody in children with diffuse intrinsic pontine glioma (DIPG). J Clin Oncol 35(15 suppl) : 2010-2010, 2017
  59. Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O, Philippe C, et al. : Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46 : 457-461, 2014 https://doi.org/10.1038/ng.2925
  60. Veringa SJ, Biesmans D, van Vuurden DG, Jansen MH, Wedekind LE, Horsman I, et al. : In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS One 8 : e61512, 2013 https://doi.org/10.1371/journal.pone.0061512
  61. von Werder A, Seidler B, Schmid RM, Schneider G, Saur D : Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system. Nat Protoc 7 : 1167-1183, 2012 https://doi.org/10.1038/nprot.2012.060
  62. Vykhodtseva NI, Hynynen K, Damianou C : Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21 : 969-979, 1995 https://doi.org/10.1016/0301-5629(95)00038-S
  63. Walker DA, Liu J, Kieran M, Jabado N, Picton S, Packer R, et al. : A multidisciplinary consensus statement concerning surgical approaches to lowgrade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro Oncol 15 : 462-468, 2013 https://doi.org/10.1093/neuonc/nos330
  64. Warren KE : Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2 : 205, 2012
  65. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. : Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44 : 251-253, 2012 https://doi.org/10.1038/ng.1102
  66. Wu YL, Maachani UB, Schweitzer M, Singh R, Wang M, Chang R, et al. : Dual inhibition of PI3K/AKT and MEK/ERK pathways induces synergistic antitumor effects in diffuse intrinsic pontine glioma cells. Transl Oncol 10 : 221-228, 2017 https://doi.org/10.1016/j.tranon.2016.12.008
  67. Zaghloul MS, Eldebawy E, Ahmed S, Mousa AG, Amin A, Refaat A, et al. : Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiother Oncol 111 : 35-40, 2014 https://doi.org/10.1016/j.radonc.2014.01.013
  68. Zhou Z, Singh R, Souweidane MM : Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol 15 : 116-128, 2017

피인용 문헌

  1. Developmental origins and oncogenic pathways in malignant brain tumors vol.8, pp.4, 2018, https://doi.org/10.1002/wdev.342
  2. Hypofractionated radiotherapy versus conventional radiotherapy for diffuse intrinsic pontine glioma : A systematic review and meta-analysis vol.99, pp.42, 2018, https://doi.org/10.1097/md.0000000000022721
  3. Targeting ALK2: An Open Science Approach to Developing Therapeutics for the Treatment of Diffuse Intrinsic Pontine Glioma vol.63, pp.9, 2018, https://doi.org/10.1021/acs.jmedchem.0c00395
  4. B7-H3-targeted Radioimmunotherapy of Human Cancer vol.27, pp.24, 2020, https://doi.org/10.2174/0929867326666190228120908
  5. Leveraging an Open Science Drug Discovery Model to Develop CNS-Penetrant ALK2 Inhibitors for the Treatment of Diffuse Intrinsic Pontine Glioma vol.63, pp.17, 2020, https://doi.org/10.1021/acs.jmedchem.0c01199
  6. Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas vol.12, pp.10, 2018, https://doi.org/10.3390/cancers12102813
  7. Development of a human in vitro blood–brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance vol.17, pp.1, 2018, https://doi.org/10.1186/s12987-020-00198-0
  8. Amphiphilic Polymeric Nanoparticles Modified with a Protease-Resistant Peptide Shuttle for the Delivery of SN-38 in Diffuse Intrinsic Pontine Glioma vol.4, pp.2, 2018, https://doi.org/10.1021/acsanm.0c02888
  9. Doxorubicin-Loaded Gold Nanoarchitectures as a Therapeutic Strategy against Diffuse Intrinsic Pontine Glioma vol.13, pp.6, 2021, https://doi.org/10.3390/cancers13061278
  10. Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier vol.14, pp.3, 2018, https://doi.org/10.1080/17512433.2021.1887729
  11. Retrospective study of diffuse intrinsic pontine glioma in the Belgian population: a 25 year experience vol.153, pp.2, 2021, https://doi.org/10.1007/s11060-021-03766-y
  12. The Long Non-Coding RNA H19 Drives the Proliferation of Diffuse Intrinsic Pontine Glioma with H3K27 Mutation vol.22, pp.17, 2018, https://doi.org/10.3390/ijms22179165
  13. Epigenomics and immunotherapeutic advances in pediatric brain tumors vol.5, pp.1, 2018, https://doi.org/10.1038/s41698-021-00173-4
  14. Design considerations of an IL13Rα2 antibody-drug conjugate for diffuse intrinsic pontine glioma vol.9, pp.1, 2018, https://doi.org/10.1186/s40478-021-01184-9