DOI QR코드

DOI QR Code

플라즈마 강화 원자층 증착법에 의한 TaNx 박막의 전기 전도도 조절

Electrical Conductivity Modulation in TaNx Films Grown by Plasma Enhanced Atomic Layer Deposition

  • 류성연 (서울과학기술대학교 신소재공학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Ryu, Sung Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2018.03.23
  • 심사 : 2018.03.30
  • 발행 : 2018.04.27

초록

$TaN_x$ film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using $NH_3$ as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using $N_2+H_2$ mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown $TaN_x$ film with $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. For a comparison, reactive sputter-grown $TaN_x$ film with $N_2$ is also studied. The results reveal that ALD-grown $TaN_x$ films with $NH_3$ and $H_2$ include a metallic Ta-N bond, which results in the film's higher conductivity. Meanwhile, ALD-grown $TaN_x$ film with a $N_2+H_2$ mixed gas or sputtergrown $TaN_x$ film with $N_2$ gas mainly contains a semiconducting $Ta_3N_5$ bond. Such a different portion of Ta-N and $Ta_3N_5$ bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.

키워드

참고문헌

  1. C. L. Au, W. A. Anderson, D. A. Schmitz, J. C. Flassayer, and F. M. Collins, J. Mater. Res., 5, 1224 (1990). https://doi.org/10.1557/JMR.1990.1224
  2. T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, Appl. Surf. Sci., 99, 265 (1996). https://doi.org/10.1016/0169-4332(96)00464-3
  3. T. Yeh, D. Swanson, L. Berg, and P. Karn, IEEE Trans. Magn., 33, 3631 (1997). https://doi.org/10.1109/20.619520
  4. S. I. Nakao, M. Numata, and T. Ohmi, Japanese J. Appl. Phys., 38, 2401 (1999). https://doi.org/10.1143/JJAP.38.2401
  5. K. Kim and J. Choi, in IEEE Non-Volatile Semicond. Mem. Work. (2006), pp. 9-11.
  6. P. Zhang, J. Zhang, and J. Gong, Chem. Soc. Rev., 43, 4395 (2014). https://doi.org/10.1039/C3CS60438A
  7. L. Yu, C. Stampfl, D. Marshall, T. Eshrich, V. Narayanan, J. M. Rowell, N. Newman, and A. J. Freeman, Phys. Rev. B, 65, 245110 (2002). https://doi.org/10.1103/PhysRevB.65.245110
  8. S. M. Kang, S. G. Yoon, S. J. Suh, and D. H. Yoon, Thin Solid Films, 516, 3568 (2008). https://doi.org/10.1016/j.tsf.2007.08.027
  9. H. Kim, A. J. Kellock, and S. M. Rossnagel, J. Appl. Phys., 92, 7080 (2002). https://doi.org/10.1063/1.1519949
  10. H.-S. Chung, J.-D. Kwon, and S. W. Kang, J. Electrochem. Soc., 153, C751 (2006). https://doi.org/10.1149/1.2344834
  11. Z. Fang, H. C. Aspinall, R. Odedra, and R. J. Potter, J. Cryst. Growth, 331, 33 (2011). https://doi.org/10.1016/j.jcrysgro.2011.07.012
  12. S. Somani, A. Mukhopadhyay, and C. Musgrave, J. Phys. Chem. C, 115, 11507 (2011). https://doi.org/10.1021/jp1059374
  13. B. B. Burton, A. R. Lavoie, and S. M. George, J. Electrochem. Soc., 155, D508 (2008). https://doi.org/10.1149/1.2908741
  14. M. Ritala, P. Kalsi, D. Riihela, and K. Kukli, Chem. Mater., 11, 1712 (1999). https://doi.org/10.1021/cm980760x
  15. B. J. Choi, J. Zhang, K. Norris, G. Gibson, K. M. Kim, W. Jackson, M. X. M. Zhang, Z. Li, J. J. Yang, and R. S. Williams, Adv. Mater., 28, 356 (2016). https://doi.org/10.1002/adma.201503604
  16. C. M. Fang, E. Orhan, G. A. de Wijs, H. T. Hintzen, R. A. de Groot, R. Marchand, J.-Y. Saillard, and G. de With, J. Mater. Chem., 11, 1248 (2001). https://doi.org/10.1039/b005751g