DOI QR코드

DOI QR Code

Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire

  • Kim, Dae-sik (Department of Materials Science & Engineering, Korea University) ;
  • Kwon, Jun-hyuck (Department of Materials Science & Engineering, Korea University) ;
  • Jhin, Junggeun (LED Procurement Team, LG Innotek) ;
  • Byun, Dongjin (Department of Materials Science & Engineering, Korea University)
  • 투고 : 2017.11.02
  • 심사 : 2018.03.16
  • 발행 : 2018.04.27

초록

Epitaxial ($11{\bar{2}}0$) a-plane GaN films were grown on a ($1{\bar{1}}02$) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient $H_2/NH_3$ mixture gas at $1140^{\circ}C$ after carbonization by the pyrolysis in ambient $H_2$ at $1100^{\circ}C$. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ${\omega}-2{\theta}$ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After $Ar^+$ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.

키워드

참고문헌

  1. S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., 30, L1708 (1991). https://doi.org/10.1143/JJAP.30.L1708
  2. M. A. Khan, A. Bhattarai, J. N. Kuznia and D. T. Oison, Appl. Phys. Lett., 63, 1214 (1993). https://doi.org/10.1063/1.109775
  3. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys., 76, 1363 (1994). https://doi.org/10.1063/1.358463
  4. J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz and A. Hangleiter, Phys. Rev. B, 57, R9435 (1998). https://doi.org/10.1103/PhysRevB.57.R9435
  5. R. Langer, J. Simon, V. Ortiz, N. T. Pelekanos, A. Barski, R. Andre and M. Godlewski, Appl. Phys. Lett., 74, 3827 (1999). https://doi.org/10.1063/1.124193
  6. P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean and J. Massies, Appl. Phys. Lett., 78, 1252 (2001). https://doi.org/10.1063/1.1351517
  7. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka and N. Yamada, Appl. Phys. Lett., 73, 1691 (1998). https://doi.org/10.1063/1.122247
  8. F. Bernardini and V. Fiorentini, Phys. Rev. B, 57, R9427 (1998). https://doi.org/10.1103/PhysRevB.57.R9427
  9. R. Cingolani, A. Botchkarev, H. Tang, H. Morkoc, G. Traetta, G. Coli, M. Lomascolo, A. D. Carlo, F. D. Sala and P. Lugli, Phys. Rev. B, 61, 2711 (2000). https://doi.org/10.1103/PhysRevB.61.2711
  10. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, Nature, 406, 865 (2000). https://doi.org/10.1038/35022529
  11. Y. J. Sun, O. Brandt, S. Cronenberg, S. Dhar, H. T. Grahn, K. H. Ploog, P. Waltereit and J. S. Speck, Phys. Rev. B, 67, 041306 (2003). https://doi.org/10.1103/PhysRevB.67.041306
  12. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck and S. P. Denbaars, Appl. Phys. Lett., 81, 469 (2002). https://doi.org/10.1063/1.1493220
  13. S. Jang, D. Lee, J.-H. Kwon, S.-I. Kim, S. Y. Yim, J. Lee, J. H. Park and D. Byun, Jpn. J. Appl. Phys., 52, 115501 (2012).
  14. C. Roder, S. Einfeldt, S. Figge, T. Paskova, D. Hommel, P. P. Paskov, B. Monemar, U. Behn, B. A. Haskell, P. T. Fini and S. Nakamura, J. Appl. Phys., 100, 103511 (2006). https://doi.org/10.1063/1.2386940
  15. B. H. Kang, J. E. Lee, D.-S. Kim, S. Bae, S. Jung, J. Park, J. Jhin and D. Byun, J. Nanosci. Nanotechnol., 16, 11563 (2016). https://doi.org/10.1166/jnn.2016.13552
  16. C.-M. Lee, B. H. Kang, D.-S. Kim and D. Byun, Korean J. Mater. Res., 24, 645 (2014). https://doi.org/10.3740/MRSK.2014.24.12.645
  17. S.-I. Kim, B. Kim, S. Jang, A.-Y. Kim, J. Park and D. Byun, J. Cryst. Growth, 326, 200 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.097
  18. D.-S. Kim, W. S. Jeong, H. Ko, J.-S. Lee and D. Byun, Thin Solid Films, 641, 2 (2017). https://doi.org/10.1016/j.tsf.2017.06.042
  19. D.-S. Kim, C.-M. Lee, W. S. Jeong, S. H. Cho, J. Jhin and D. Byun, J. Nanosci. Nanotechnol., 16, 11575 (2016). https://doi.org/10.1166/jnn.2016.13554
  20. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau and S. J. Cheng, Appl. Phys. Lett., 93, 081108 (2008). https://doi.org/10.1063/1.2969062
  21. J. A. Smart, E. M. Chumbes, A. T. Schremer, and J. R. Shealy, Appl. Phys. Lett., 75, 3820 (1999). https://doi.org/10.1063/1.125467
  22. A. Strittmatter, S. Rodt, L. Reissmann, D. Bimberg, H. Schroder, E. Obermeier, T. Riemann, J. Christen and A. Krost, Appl. Phys. Lett., 78, 727 (2001). https://doi.org/10.1063/1.1347013
  23. T. Vodenitcharova, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho and M. Sato, J. Mater. Process. Tech., 194, 52 (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.125
  24. G. Guzman, M. Herrera, R. Silva, G. C. Vasquez and D. Maestre, Semicond. Sci. Technol., 31, 055006 (2016). https://doi.org/10.1088/0268-1242/31/5/055006
  25. T. K. Sherwood and R. O. Maak, Ind. Eng. Chem. Fundam., 1, 111, (1962). https://doi.org/10.1021/i160002a008
  26. F. K. Dijen and J. Pluijmakers, J. Eur. Ceram. Soc., 5, 385 (1989). https://doi.org/10.1016/0955-2219(89)90043-5
  27. G. C. Lars, S. Felix, A.-P. Frank, P. Vivien, K. Jesper, B. Thomas and N. K. Jens, Angew. Chem., Int. Ed., 50, 4601 (2011). https://doi.org/10.1002/anie.201100353
  28. F. Cacace and A. P. Wolf, J. Am. Chem. Soc., 87, 5301 (1965). https://doi.org/10.1021/ja00951a007
  29. S. B. Philip, M. W. Daniel and M. Paul, J. Am. Chem. Soc., 105, 488 (1983). https://doi.org/10.1021/ja00341a031
  30. K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka and S. Minagawa, J. Appl. Phys., 79, 3487 (1996). https://doi.org/10.1063/1.361398
  31. V. Thakur and S. M. Shivaprasad, Appl. Surf. Sci., 327, 389 (2015). https://doi.org/10.1016/j.apsusc.2014.11.082